Report on Industrial Boiler New Source Performance Standards

JUNE 1986
Report on Industrial Boiler New Source Performance Standards

GERALD BLACKMORE, Chairman
Coal Policy Committee
WILLIAM B. MARX, Leader
NSPS Work Group

JUNE 1986

THE NATIONAL COAL COUNCIL
The National Coal Council is a Federal Advisory Committee to the Secretary of Energy.

The sole purpose of the National Coal Council is to advise, inform, and make recommendations to the Secretary of Energy on any matter requested by the Secretary relating to coal or the coal industry.
THE NATIONAL COAL COUNCIL
Post Office Box 17370, Arlington, Virginia 22216
(703) 527-1191

June 3, 1986

The Honorable John S. Herrington
Secretary of Energy
Washington, DC 20585

Dear Mr. Secretary:

I am pleased to transmit, on behalf of the National Coal Council, the attached report on Industrial Boiler New Source Performance Standards. This report has been prepared in response to your request of January, 1986, and approved by the Council on June 3, 1986. As you may be aware, the Environmental Protection Agency (EPA) has just proposed New Source Performance Standards (NSPS) which would require 90% reduction of sulfur dioxide emissions and a maximum limitation of 1.2 LB SO₂/MMBTU from all new coal-fired industrial boilers with a heat input greater than 100 MMBTU/HR. The public comment period will end on September 2, 1986.

The primary purpose of the report is to analyze the impact these proposed regulations will have on the national policy of increased coal use, as it relates to U.S. industry.

The National Coal Council has found that these proposed NSPS will practically eliminate coal as a viable fuel choice for new industrial boilers. This finding is supported by the following specific conclusions:

- These regulations would increase the cost of steam from new coal-fired industrial boilers by at least $0.70/MMBTU, or roughly $17/ton, thus causing the displacement of about 5.6 million tons/year of potential coal use by natural gas by 1990. (In fact, the most recent EPA press release (6/12/85) admits that only 5% of the new industrial boiler population would be coal-fired, displacing over 10 million tons per year of potential coal sales);
- New technologies lack sufficient operating data upon which to base nationwide NSPS;
- Total emissions from new industrial boilers will be insignificant because:

An Advisory Committee to the Secretary of Energy
Under EPA's worst case scenario, total potential emissions from all new industrial boilers above 100 MMBTU/HR, even without further regulation, would amount to less than 1.5% of the total U.S. SO₂ emissions.

Regardless of any NSPS, industrial boiler emissions will continue to decline because of energy conservation, reductions in heavy industrial capacity, existing state and local emission standards, and the fact that most new boilers are installed to replace older units, resulting in a stable or declining industrial boiler population.

The smaller boiler population segment between 100 and 250 MMBTU/HR, deserves special consideration because:

a. It replaces only 18% of the aggregate new boiler capacity;
b. Its SO₂ emissions will contribute less than 0.3% of the U.S. total;
c. Capital-related costs are disproportionately higher due to a lack of an economy of scale;
d. Coal transportation costs will be higher because volume shipping savings are not available to these users.

Based upon these conclusions, the National Coal Council offers the following recommendations for consideration in the Department of Energy comments:

1. Support extension of the existing 1.2 LB SO₂/MMBTU maximum emissions regulation for new industrial boilers with a heat input of 250 MMBTU/HR or greater.
2. Oppose the mandatory 90% reduction requirement for industrial boilers greater than 100 MMBTU/HR.
3. Support a reasonable SO₂ emission standard for new boilers in the 100 to 250 MMBTU/HR range, established at the point which balances both delivered coal costs and overall SO₂ emissions, based on a study of the geographic availability of coals with various sulfur contents;
4. Seek to ensure that NSPS regulations for new technologies be proposed only after careful analysis of emissions data from commercial units in the applicable size ranges.
We are confident that this report will prove useful and timely in advising you concerning the potential impact of the proposed regulation for New Source Performance Standards currently under consideration. We stand ready to provide you with any additional information in this matter, as you may desire.

Sincerely,

Honorable John N. Dalton
Chairman

B. R. Brown
Acting Chairman
Executive Summary

The Environmental Protection Agency (EPA) is currently developing nationally applicable emission limitations for "industrial fossil fuel-fired steam generators" in accordance with Section 111 of the Clean Air Act. The present regulations require a flat 1.2 LB SO$_2$/MM BTU maximum emission limitation for all new industrial boilers with a thermal heat input of 250 MM BTU/HR or greater. The draft standards being developed by the EPA would require 90% reduction of sulfur dioxide emissions and a maximum limitation of 1.2 LB SO$_2$/MM BTU from all new coal-fired industrial boilers which have a heat input greater than 100 MM BTU/HR.

At the request of the Secretary of Energy, the National Coal Council (NCC) convened a work group to analyze and report on the potential impacts of the EPA's pre-proposed industrial boiler standards. The attached report, approved by The National Coal Council on June 3, 1986, is in response to the Secretary's request.

Conclusions

Based on an examination of published EPA documents, consultations with actual industrial boiler operators and manufacturers and other pertinent sources, the following conclusions were drawn:

- The draft regulations would increase the cost of steam from new coal-fired industrial boilers by at least $0.70/MM BTU or roughly $17/ton with existing flue gas desulfurization technologies. These additional costs would cause a significant shift from coal to natural gas use. By 1990, it is expected that 70% of the new industrial boiler capacity above 100 MM BTU/HR heat input would be gas fired, displacing about 5.6 million tons/year of potential coal sales if the draft EPA rules are instituted.
- New technologies, such as fluidized bed combustion, although promising, currently lack sufficient operating data upon which to base New Source Performance Standard regulations.
- The total emissions from new industrial boilers will be relatively insignificant for two reasons:
 - Under a worst case EPA scenario, the total potential emissions from all new industrial boilers above 100 MM BTU/HR, if left completely unregulated, would amount to less than 1.5% of the total U.S. SO$_2$ emissions.
 - Industrial boiler emissions have declined and are expected to continue to decline regardless of any additional federally implemented New Source Performance Standards. Between 1973 and 1983, all U.S. industrial SO$_2$ emissions have decreased 46%. This reduction is a result of energy conservation, reductions in smelter and other heavy industrial capacity, declining industrial boiler population, the replacement nature of the new boiler market (new boilers tend to replace old ones) and existing state and local emission standards.
- The boiler population segment between 100 and 250 MM BTU/HR deserves special consideration because:
 a. Only 18% of the aggregate capacity of new industrial boilers falls in this size range.
 b. SO$_2$ emissions from this segment will contribute at the most 0.3% of the total U.S. emissions.
c. Capital related costs incurred by this segment are disproportionately higher than the larger boilers due to a lack of an economy of scale.
d. Coal transportation costs are liable to be higher because overall coal consumption is lower and therefore volume shipping savings enjoyed by larger users are foregone.

Recommendations

The NCC recognizes that the EPA is legally compelled to develop standards for new industrial boilers. Therefore, it is recommended that:

1. The Secretary of Energy should support the existing flat 1.2 LB SO₂/MM BTU maximum emission regulation for new industrial boilers with a heat input of 250 MM BTU/HR or greater.
2. The Secretary of Energy should not support the draft EPA regulations for industrial boilers greater than 100 MM BTU/HR, which includes a mandatory 90% SO₂ reduction.

3. The Secretary of Energy should support a reasonable SO₂ emission standard for new boilers above 100 MM BTU/HR heat input. Between 100-250 MM BTU/HR, the limitation should be established at the point which minimizes both delivered coal costs for the small industrial boiler and overall SO₂ emissions. The level should be no lower than 1.2 LB SO₂/MM BTU; 1.6 LB is used for illustration purposes in the report. The exact limitation should be based on a study of the geographic availability of coals with various sulfur contents and associated impacts on delivered coal costs and overall emissions.

4. The Secretary of Energy should ensure that NSPS regulations for new technologies be based upon careful studies of actual commercial units in the applicable size ranges. This is consistent with recommendations made by the NCC Report on Clean Coal Technology.
Introduction

The Environmental Protection Agency (EPA) is currently developing nationally applicable emission limitations for "industrial fossil fuel fired steam generators" in accordance with Sec. 111 of the Clean Air Act. The present regulations require a flat 1.2 LB SO$_2$/MM BTU maximum limitation of all new industrial boilers with a thermal heat input of 250 MM BTU/HR or greater. The draft standards being developed by the EPA would require 90% reduction of sulfur dioxide emissions and a limitation maximum of 1.2 LB SO$_2$/MM BTU from all new coal fired industrial boilers which have a heat input of 100 MM BTU/HR or greater.

At the request of the Secretary of Energy, the National Coal Council (NCC) has convened a work group to analyze and report on the potential impacts of the EPA's pre-proposed industrial boiler standards. This report is in response to the Secretary's request.

Most of the conclusions in this report regarding impacts are based on an analysis of EPA Development Documents and actual industrial boiler sales, cost, and operating data.

Neither the High Coal nor High Oil Penetration fuel price projections match today's environment.

The High Coal Penetration scenario is the EPA's worst case for SO$_2$ emissions from new coal-fired boilers. It is the worst case because the assumed differential between coal and natural gas ($3.16 to $3.98/MM BTU), implies a substantial incentive to burn coal. Yet, even under these favorable economic conditions for coal, the EPA projects natural gas will capture 70% of the new boiler market, primarily because of the added penalties of flue gas scrubbing.

Currently, coal/natural gas price differentials are on the order of $1 to $2/MM BTU depending on local gas and coal prices. In today's environment, very few new industrial coal boilers will be built, simply because an adequate fuel price differential, needed to pay for the higher non-fuel costs of coal firing, is lacking.

Thus, although the EPA High Coal Penetration scenario is the basis for impacts shown in this report, it certainly represents a very worst case scenario for new coal fired SO$_2$ emissions, one that we believe is exaggerated and unrealistic.

Chapter 1

Background

Importance of Industrial Steam

The importance of industrial steam is clear: approximately two-thirds of all fuel burned by U.S. industry is consumed to raise steam. Virtually our entire manufacturing base depends on steam to produce its products, either for process use, to drive mechanical equipment (e.g. pumps and fans), for space heating, or for the on-site generation of electricity. Steam's importance to American production and the need for a reliable fuel source to sustain it can hardly be overstated.

Energy Efficiency

Because a manufacturing plant has many uses for steam—process heat, space heat and the generation of electricity—it is able to use the maximum amount of heat present in the steam that can be extracted. This fact, combined with the vigorous energy conservation practiced across U.S. industry since 1973, means that each unit of heat combusted at a manufacturing facility typically contributes twice the useful output achieved in a typical utility generating plant. At utilities, a majority of the potential heat is wasted since there is only one use for it—the production of electricity.

Industrial Energy Conservation and Its Impact on the Industrial Boiler Market

Primarily due to the highly effective energy conservation measures of industry since 1973, total U.S. industrial energy consumption has decreased by 7.5% from 1972 to 1984, according to the Energy Information Administration. Concurrently with this decrease in energy consumption, according to the recent "Joint Report of the Special Envoys on Acid Rain", a 46% reduction in SO₂ emissions from all industrial sources was achieved over this same time span. This reduction was a result of the following factors: energy conservation, reduction in heavy industrial capacity such as non-ferrous smelters, declining industrial boiler population, the replacement nature of the new boiler market (new boilers tend to replace old ones, not add new capacity) and the implementation of more stringent state and local emission standards.

Much of U.S. industry has excess steam-generating capacity, and will add new units largely on a replacement basis. These new boilers will retire existing units, the net effect being a flat or declining U.S. boiler inventory in the foreseeable future.

The result is that most new boiler installations are a discretionary use of scarce capital—and will receive management approval only when they represent sound economic investments. These replacement units will generally be less polluting than the units replaced, with a resultant automatic emissions reduction. This fact is confirmed by the aforementioned survey which shows that, of the installations able to report emissions data from the new and replaced sources, 29 new boilers took the place of 54 old units, with a resultant annual decrease in SO₂ emis-

³A survey conducted by the Council of Industrial Boiler Owners in September, 1984, confirms this trend, showing that more than 80% of new boiler projects will replace older units (See Appendix C).
sions of 9,526 tons. Thus, it is important that environmental regulation not impede this process.

Differences Between Industrial and Utility Boilers

A utility boiler and an industrial boiler are significantly different. Yet, because both generate steam, regulators have tended to treat them alike. The regulations implementing the percent reduction requirement of the current Clean Air Act are an example of such identical treatment.

Today’s typical utility unit produces 3.5 million pounds of steam an hour. By contrast, the average industrial boiler generates only about 100,000 pounds per hour. Thus, the average new industrial boiler is a dwarf compared to the giant utility boiler.

Second, while a utility boiler has but one purpose—to generate steam at a relatively steady rate to drive turbines that produce electricity—industrial boilers serve a variety of markedly different purposes in various industries. Furthermore, while utilities burn fossil fuels almost exclusively, industrials frequently burn a wide variety of process-generated wastes.

Industrial boiler design, therefore, varies greatly depending upon the fuels burned, the application of steam in a particular plant, and the daily and seasonal load variations. Even at a single industrial installation the application of steam can change drastically, from day to day, hour to hour, and even sometimes minute to minute depending upon the momentary production activity and its demand for steam. These considerations, the need to maintain production, and to use the least costly fuel, mean that industrial users require of their steam plants a degree of flexibility and reliability not required by a utility, whose output is assured by connection to other plants and systems in an electrical grid. Thus, environmental regulation of industrial boilers must be based on these different conditions rather than treating these boilers like utility units.
Chapter 2:

EPA's Industrial Boiler NSPS Proposal

Synopsis of Draft EPA NSPS for Coal-fired Industrial Boilers

Following passage of the 1977 Clean Air Act, EPA divided its standards-setting process into two parts, applying the percentage reduction requirement to utility boilers with an input >250 MM BTU/hr, and letting stand the simple 1.2# SO₂/million BTU input emissions cap for industrial boilers with an input >250 MM BTU/hr.

On June 19, 1984, EPA proposed NSPS for emissions of particulate matter (PM) and nitrogen oxides (NOₓ) for all commercial, institutional and industrial boilers with a heat input greater than 100 million BTU/hour. The corresponding standard for sulfur dioxide (SO₂) is not yet proposed; however, various industrial representatives have been informed by EPA staff that both percentage reduction and emission limits for industrial boilers are required under the Clean Air Act. EPA now proposes that the standard be amended to cover boilers from 100-250 MM BTU/HR heat input and that, rather than a simple emissions cap, these smaller boilers also be required to implement the percentage reduction requirements of the law. This would result in the application of flue gas desulfurization (scrubbing) to all industrial units greater than 100 MM BTU.

The following table reflects the proposed standards for PM and NOₓ and the "pre-proposed or draft" SO₂ standards for coal-fired industrial boilers.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Proposed NSPS for Industrial Boilers (#MM BTU Heat Input)</th>
<th>Reported Recommendation to be Proposed June 1, 1986</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fuel</td>
<td>PM⁶</td>
</tr>
<tr>
<td>Coal</td>
<td>0.05</td>
<td>0.5 to 0.7³</td>
</tr>
<tr>
<td>Oil</td>
<td>0.10</td>
<td>0.10 to 0.4³</td>
</tr>
<tr>
<td>Nat. Gas</td>
<td>—</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Background

Section 111 of the 1977 Clean Air Act defines standards of performance for new sources. The Act provides for emission standards:

(i) establishing allowable emission limitations for such category of sources, and
(ii) requiring the achievement of a percentage reduction in the emissions from such category of sources from the emissions which would have resulted from the use of fuels which are not subject to treatment prior to combustion.

[Sec. 111(a)(I)(A)]

The language clearly establishes congressional intent to achieve balance by requiring that standards reflect:

the best system of continuous emission reduction which (taking into consideration the cost of achieving such emission reduction, and any non-air quality health and environmental impact and energy requirements) the Administrator determines has been adequately demonstrated for that category of sources. (Emphasis Added.)

[Sec. 111(a)(I)(C)]

This intent was confirmed in Sierra Club v. Castle, 657 F.2d 298, 330 (D.C. Cir. 1981), where the Circuit Court explained that:

³Federal Register, June 19, 1984, (pp. 25102-25157).
⁴Varies according to combustion type and unit size.
⁵Varies with type oil and nitrogen content.
section 111 most reasonably seems to require that EPA identify the emission levels that are 'achievable' with 'adequately demonstrated technology.' After EPA makes this determination, it must exercise its discretion to choose an achievable emission level which represents the best balance of economic, environmental, and energy considerations . . .
(Emphasis Added)

To fulfill the requirements of the law and its implementing regulations, NSPS must be based on the following factors:
1. Cost-effectiveness
2. Achievability
3. Highly reliable control technologies
4. Adequately demonstrated control technologies.

These are not merely "desirable" aspects of sound regulation, they are critical factors required by the plain language of the law.

For more information on the legal aspects see Appendix A.

Economic Analysis of EPA's draft NSPS for SO₂ Emissions Control for Coal-Fired Industrial Boilers

DEFICIENCIES IN COST ESTIMATES; DISPROPORTIONATE COSTS IMPOSED BY DRAFT NSPS

EPA's March 1985 regulatory analysis considered costs of two approaches to reduce SO₂ emissions from coal-fired steam generating units: the combustion of low sulfur coals, and the use of flue gas desulfurization (FGD) systems. A more detailed discussion of commercial flue gas scrubbing technology is provided in Appendix B-1). EPA's cost analyses show that a 90% SO₂ mandatory reduction for a 100 million BTU/hr boiler would increase annualized costs over burning low sulfur coal by 26% of the fuel costs or $0.87/MM BTU.

For boilers of approximately 400 million BTU/HR heat input, the annualized cost increase over use of low sulfur coal is 18% of the total fuel cost or $0.60/MM BTU. These costs illustrate how economies of scale disproportionately increase costs for the small industrial boiler owner. Further, the small coal user is liable to incur additional cost penalties, particularly if the coal is shipped long distances, due to an inability to obtain volume discounts for coal transportation costs. This kind of cost penalty is not reflected in the EPA costs.

To check the costs of scrubbing reported by the EPA, we conducted a survey of six architect-engineer firms experienced in the design and construction of industrial power plants, as well as several boiler operators. Four of the nine data sets received covered industrial projects; four represented studies based on analyses of past projects and bids; and one was on a dry FGD system which has been operating since 1983. All but one of the cases reported used dry scrubbing. See Appendix B-2.

The cost increase for scrubbing, reported in $/MM BTU, appears to agree very well with EPA data. However, the EPA costs for scrubbing are based on wet systems, whereas the data shown in Appendix B-2, are mostly dry systems. Studies of utility scrubbers have shown that the total annualized costs for dry scrubbers are usually about 10-30% lower than wet scrubbers, when compared on an equal basis.

Another recent survey showed that of 107 industrial coal-fired boilers installed in the last five years, only five had scrubbers, and these were the dry type. This shows the heavy preference of industry for compliance coal.

FUEL-SWITCHING

Figure 1 shows the degree of natural gas penetration into this traditional coal market that can be expected as the EPA recommendation of flue gas desulfurization with a 90% SO₂ reduction and a 1.2 lbs. SO₂/MM BTU emissions limit is applied to various sized industrial boilers. An explanation of the EPA alternatives is given in Table 1. As shown in Figure 1, it becomes quite

1. Industry routinely expects a forced outage rate of less than 2%.
5. It is important to note that, when removal efficiency was cited, it was 70%.
7. See Appendix C for a list of these installations.
FIGURE 1
Comparison of Natural Gas vs. Coal Use* Under EPA’S Proposed Alternatives

*Industrial boilers

SOURCE:

TABLE 1*
Regulatory Alternatives — Fossil Fuel-Fired Steam Generating Units

<table>
<thead>
<tr>
<th>REGULATORY ALTERNATIVE*</th>
<th>STEAM GENERATING UNIT SIZE (MILLION BTU/HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100-150</td>
</tr>
<tr>
<td>HIGH COAL PENETRATION</td>
<td></td>
</tr>
<tr>
<td>Alternative 1</td>
<td>1.2</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>1.2</td>
</tr>
<tr>
<td>Alternative 3</td>
<td>1.2</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>1.2</td>
</tr>
<tr>
<td>Alternative 5</td>
<td>90% Reduction</td>
</tr>
</tbody>
</table>

*Control levels shown for each regulatory alternative are SO₂ emission limits in lb SO₂/million Btu for a required percent reduction in SO₂ emissions.

*As per Table 49 (p. 205) EPA Development Document.
obvious that the use of natural gas increases as the EPA proposed standard (Alternative 5) is applied to smaller and smaller units. This figure shows in graphic form the data presented in Table 50 (p. 206) of the EPA Development Document of March, 1985. As a matter of fact, under Alternative 5, where the FGD/90% reduction standard is applied to all units, the use of natural gas increases dramatically to 70% of the EPA projection of the 1990 energy market, or an equivalent of 14.1 million tons of coal.

Figure 2 shows quite clearly that a significant SO₂ emissions reduction (65%) occurs with the application of a simple 1.2 lbs. SO₂/MM BTU limit applied across the board under EPA Alternative 1. Incremental reductions in SO₂ with controls more stringent than Alternative 1 occur more as a result of wholesale fuel-switching to natural gas, as demonstrated in Figure 1, rather than the use of the proposed technology. Thus, these emissions are not reduced by use of the proposed control options, but by substituting natural gas for coal.

As mentioned previously, the EPA draft proposal for this sector requires an emission limit of 1.2 lbs. SO₂/MM BTU for all boiler units of 100
MM BTU/HR heat input and larger, accompanied by 90% removal. We have shown through EPA’s own analysis that such an approach is not cost effective and that a significant portion of the SO₂ reduction would be achieved not through emission control, but through the utilization of natural gas to avoid these excessive SO₂ control costs.

Further, we also believe that the application of the 1.2 lbs. SO₂ standard to smaller units (i.e., those boilers less than 250 MM BTU/HR heat input) is not justified on the basis of the volume of SO₂ emitted by this group, and the disproportionate share of costs they would bear. Sales figures (1985) of the American Boiler Manufacturers Association show that only 18% of the aggregate capacity of new boilers in this sector is expected to be supplied by smaller units; the remaining 82% of capacity is projected to be supplied by larger units (See Appendix D) which are already subject to the current 1.2 lbs. SO₂ emission limit. It is our belief that a higher standard—such as, for illustration, 1.6 lbs. SO₂/MM BTU—could be applied to smaller units with no serious loss in SO₂ removal. For example: Figure 2 shows that a 65% reduction in SO₂ is achieved when the EPA limit of 1.2 lbs. SO₂ is applied across the board to all units (Alternative 1). When a limit of, e.g., 1.6 lbs. SO₂ is substituted for the EPA proposal of 1.2 lbs. SO₂ for smaller units and the more accurate capacity ratio of smaller to larger units is applied to the projected emissions from this sector, a reduction of 63% is still achieved when compared to the EPA base case. The difference between the EPA recommendation of 1.2 lbs. SO₂ and the substitution in the range of 1.6 lbs. SO₂ for smaller units is a mere 3,000 tons SO₂/YR, less than 1% of the 326,000 TPY projected by EPA for this sector in 1990.

This slight increase in SO₂ emissions would produce significant benefits to smaller users of coal. Coals meeting higher limits are more widely available, thus producing a positive transportation cost effect as well as lower costs per ton of coal.

When one considers the national 23 million ton SO₂ emissions from all U.S. sources in 1984, the emissions difference between the illustration and EPA’s proposed standard for this category of new sources represents less than 1% of the total annual domestic SO₂ emissions (actually 0.75%)—but it would be achieved at considerably lower costs per ton of SO₂ removed than EPA’s proposed standards.¹⁶ As a matter of fact, according to EPA’s own estimates, these costs range from $300 to $400/ton of SO₂ removed under this alternative compared to $510 to $840/ton removed under the EPA’s proposed standards. Although the costs under the EPA proposal are nearly twice those of the illustrated alternative, they do not reflect problems associated with sludge disposal, reliability of technology, and the security of reliable sources of energy.

To summarize, the small amount of theoretically additional SO₂ captured through the proposed EPA regulations does not justify the drastic measures proposed for this category of new sources. Furthermore, EPA’s calculations do not take into account the fact that a preponderant majority of new boilers installed will retire dirtier units, thus resulting in an overall emissions reduction regardless of the standard.

Chapter 3

Need to Encourage Innovative Fuels and Technologies; e.g. Fluidized Bed Boilers

New source performance standards should stimulate, rather than dampen, industry’s drive to develop and demonstrate new, innovative technologies and fuels, so as to reduce emissions and, at the same time, advance the nation’s energy goals in a cost-effective manner. Such action was clearly recognized by the Circuit Court in *Sierra Club v. Castle, Supra*:

We have no reason to believe that Congress meant to foreclose in Section 111(a) any consideration by EPA of the stimulation of technologies that promise significant cost, energy, non-air health and environmental benefits... Rather, when balancing the enumerated factors to determine the basic standard, it is appropriate to consider which level of required control will encourage or preclude development of a technology that promises significant advantages with respect to those concerns. (Emphasis Added.)

It is important that Federal standards regulating the emissions from boilers using such technologies not be proposed until valid EPA test data from a representative group of such installations across U.S. industry have been tabulated and reviewed. Only at this point can the appropriate emission levels be set. Premature proposal of such standards, on the other hand, would inhibit and retard their development and commercial demonstration. Such slowing down would occur because (1) it would pose an additional element of risk to the would-be buyer of such technologies, in an area in which most industrial users shun high-risk investment; and (2) it would reduce sales and consequently the funds available for continued research and commercial development.

An example of this is the fluidized bed boiler, which is rapidly gaining a foothold in several energy-intensive industries. If fully developed, this technology offers the promise of a relatively less expensive, low-polluting power source facilitating use of a low-cost abundant domestic fuel. However, little commercial U.S. operating information is available upon which to base fair and reasonable NSPS regulations for fluidized bed combustors (FBC). As the EPA’s own Development Document, (March 1985), pg. 20, states:

“Of the 80 existing or planned FBC systems in the United States, 16 are designed to burn coal and nine are designed to burn coal along with other fuels. None burn oil. After excluding those FBC systems that are research and development units or that are currently under construction, the remaining of operating FBC systems burning coal is eight. Of these eight, only four FBC systems are using limestone for SO₂ control. In addition, these four FBC systems are concentrated in a very narrow range of steam generating unit size from 7 to 16 MW (24 to 54 million BTU/HR) heat input capacity and operate with an even narrower range of coal sulfur content from 52 to 540 ng SO₂/J (1.2 to 1.3 LB SO₂/million Btu).”

This operating record—just for operating units—is an insufficient basis for a sweeping set of NSPS regulations that would apply to a variety of boiler/combusstor types and vendors and a large range of sizes. And these four boilers are smaller than the minimum size which would be affected by the draft industrial NSPS regulations.

Yet EPA’s proposal may already include some of these planned installations as “affected facilities”. This action could seriously impede the full demonstration and acceptance of this technology, further delaying or perhaps stifling an efficient, economical, environmentally-sound coal-burning power source.
Chapter 4

Other Considerations

Importance of Coal to National Security

The 1973 Arab Oil embargo changed America’s thinking about energy in dramatic ways. Two events—the tripling of OPEC oil prices after the embargo and the subsequent increase in oil prices as hostilities broke out in Iran—put America on notice that it was excessively dependent upon energy from an extremely volatile region of the world.

No single domestic energy resource has contributed more than coal toward assuring America adequate supplies of reasonably priced energy over the past decade. With reserves sufficient to power the nation for several hundred years, coal provided an abundant and inexpensive domestic solution to the energy crisis. As other energy sources rose in price and became less available, coal was there to fill the gap.

To some people, the energy crisis appears to be over. However, the shortages and rising costs of energy could occur again unless actions taken to reverse the trends continue. Most of the industrialized nations of the free world remain excessively dependent on insecure sources for a large part of their energy. The implications of this excessive reliance are relatively clear. The nation is extremely vulnerable to economic and social disruption in the event of a major and abrupt interruption in the flow of petroleum from the Mideast—especially to Japan, Western Europe and the U.S. itself. These economies continue to experience a large outflow of wealth to pay for imported oil.

As proposed, the draft NSPS regulations discourage the use of coal in favor of oil and gas, pushing industry once again towards reliance on energy sources which remain insecure even today. The war in Iran continues. The Mideast remains a volatile part of the world. This regulation ignores the lessons of the recent past. Today it is even more important that this nation remain on a path to true energy independence.

The Need to Protect U.S. Industry’s Competitive Position in International Markets

To remain competitive in international markets—or to regain position—industrial steam users must be assured a reliable supply of competitive fossil fuels. This essential fuel flexibility will not be possible with an excessively stringent emissions standard for new coal-firing units since this will force most current and potential coal users to burn other fossil fuels. This is a vicious cycle, of course, because fuel switching will in turn drastically dampen coal production for industrial use. In today’s market, this may not appear to be a concern; however, over the long term, this would have unquantified but substantial impacts on balance of payments and domestic employment.

Industrial Projects: Delay or Abandonment

Under Section 111 of the Clean Air Act, new source performance standards are effective as of the date of proposal, not as of final promulgation. This means that sources must comply with the standard as proposed if construction commences after the date of proposal—regardless of changes that might be made in the ultimate standard be-
between proposal and promulgation. This creates a high degree of inherent uncertainty in the industrial boiler planning process. When this factor is combined with the mandating of flue gas SO$_2$ scrubbing, this uncertainty will be converted into costly project delay and, in many cases, abandonment, an unfortunate and expensive result.
Chapter 5

Comparison of Various Control Strategies

A broad range of control level strategies has been considered; the following three describe the range:

1. Emissions limit/percent reduction (EPA recommendation)
 Level: ≥ 100 MM BTU/HR: 1.2 lbs. per MM BTU; 90% reduction
 Method: Wet FGD
 Cost: $0.80 to 2.52/MM BTU
 Impact: Because there have been no wet FGD systems installed by industry during the past five and because of their exorbitant costs, this would discourage expansion of coal use in new industrial boilers.

2. Emissions limit/percent reduction
 Level: ≥ 100 MM BTU/HR: 1.2 lbs. per MM BTU; 70% reduction
 Method: Dry FGD
 Cost: $0.73/MM BTU
 Impact: Because of cost considerations and the availability of competitive alternative fuels, this would discourage all but a very small number of new coal-fired industrial projects.

3. Emissions limit
 Level: >250 MM BTU/HR: 1.2 lbs. per MM BTU, and 100-250 MM BTU/HR: 1.6 lbs. per MM BTU
 Methods: Options include one or more of the following: low-sulfur coal, coal beneficiation, fluidized bed combustion, dry sorbent injection and alternative emission reduction techniques.
 Cost: $0.05-50/MM BTU
 Impact: Because this would allow each industrial coal user to select the most cost-effective control method for his specific case, more new coal-fired industrial projects would be constructed than in either of the above alternatives.

This option is supported by data from the Energy Information Administration (EIA) and EPA itself. In its most recent annual coal production report, EIA finds that the average sulfur content of the coal used by industry was 1.6%, by weight, which is equivalent to an average aggregate SO₂ emissions level from existing and newer sources of 2.8 lbs. SO₂ emission per million BTU. Retention of the current 1.2 lbs. limit for large new boilers (>250 million BTU input) and a 1.6 lbs. SO₂ per MM BTU emission limit for smaller new boilers (100-250 million) would produce a resultant reduction in incremental SO₂ emissions approaching 50%.

Second, an analysis done by EPA's contractor in September, 1983, shows that the average SO₂ emissions limit of the nation's 244 air quality control regions is 3.5 lbs. per million BTU input for a model coal-fired boiler of 200 million BTU input capacity. The 1.2/1.6 lbs. combination emissions limitation, again, would result in a 50%+ mean reduction for new boilers, from the current national average.

17 Assumed at least 10% more expensive than dry scrubbers, based on utility data.
18 This is based on data submitted by General Motors at one of its locations.
20 Correspondence from Karl F. Held, Project Manager, Energy and Environmental Analysis, Inc., to William B. Marx, President, CIBO, (September 19, 1983). [See Appendix F].
Chapter 6

Conclusions

Based on this study, the following conclusions were drawn:

- The draft regulations would increase the cost of steam from new coal-fired industrial boilers by at least $0.70/MM BTU or roughly $17/ton with existing flue gas desulfurization technologies. These additional costs would cause a significant shift from coal to natural gas use. By 1990, it is expected that 70% of the industrial boiler capacity would be gas fired, displacing about 5.6 million tons/year of potential coal sales if the draft EPA rules are instituted.

- New technologies, such as fluidized bed combustion, although promising, lack sufficient operating data upon which to base New Source Performance Standard regulations.

- The total emissions from new industrial boilers will be relatively insignificant for two reasons:
 - Under a worst-case EPA scenario, the total potential emissions from all new industrial boilers above 100 MM BTU/HR, if left completely unregulated, would amount to less than 1.5% of the total U.S. SO$_2$ emissions.
 - Industrial boiler emissions have declined and are expected to continue to decline regardless of any additional federally implemented New Source Performance Standards. Between 1973 and 1983, all U.S. industrial SO$_2$ emissions have decreased 46%.21 This reduction is a result of energy conservation (energy use declined 7.5% between 1972 and 1984), reductions in smelters and other heavy industrial capacity, declining industrial boiler population, the replacement nature of the new boiler market (new boilers tend to replace old ones) and existing state and local emission standards.22

- The boiler population segment between 100 and 250 MM BTU/HR deserves special consideration because:
 - Only 18% of the aggregate capacity of new industrial boilers falls in this size range.
 - SO$_2$ emissions from this segment will contribute at the most 0.3% of the total U.S. emissions.
 - Capital related costs incurred by this segment are disproportionately higher than the larger boilers due to a lack of an economy of scale.
 - Coal transportation costs are liable to be higher because overall coal consumption is lower and therefore volume shipping savings enjoyed by larger users are foregone.

The National Coal Council recognizes that the EPA is legally compelled to develop standards for new industrial boilers. Therefore, it is recommended that:

1. The Secretary of Energy should support the existing 1.2 LB SO₂/MM BTU maximum emission regulation for new industrial boilers with a heat input of 250 MM BTU/HR or greater.

2. The Secretary of Energy should not support the draft EPA regulations for industrial boilers of 100 MM BTU/HR or greater, which includes a mandatory 90% SO₂ reduction.

3. The Secretary of Energy should support a reasonable SO₂ emission standard for new boilers above 100 MM BTU/HR heat input. Between 100-250 MM BTU/HR, the limitation should be established at the point which minimizes both delivered coal costs for the small industrial boiler and overall SO₂ emissions. The level should be no lower than 1.2 LB SO₂/MM BTU; 1.6 LB is used for illustration purposes in the report. The exact limitation should be based on a study of the geographic availability of coals with various sulfur contents and associated impacts on delivered coal costs and overall emissions.

4. The Secretary of Energy should ensure that NSPS regulations for new technologies be based upon careful studies of actual commercial units in the applicable size ranges. This is consistent with recommendations made by The National Coal Council Report on Clean Coal Technology (June, 1986).
Bibliography

Appendices
Appendix A

Other Legal Provisions

With regard to the "adequately demonstrated" requirement, in Essex Chemical Corp. v. Ruckelshaus, 466 F.2d 427, 433 (D.C. Cir. 1973), the court defined the term "adequately demonstrated" as used in Section 111. The court stated:

An adequately demonstrated system is one which has been shown to be reasonably reliable, reasonably efficient, and which can reasonably be expected to serve the interests of pollution control without becoming exorbitantly costly in an economic or environmental way. (Emphasis Added.)

In National Lime Assn. v. EPA, the same court said:

to be achievable, . . . a uniform standard must be capable of being met under worst adverse conditions which can reasonably be expected to recur and which are not or cannot be taken into account in determining the 'costs' of compliance. (Emphasis Added.) 416 F.2d 431 n.46 (D.C. Cir. 1969)

With regard to achievability, in Sierra Club v. Costle, supra, at 377, the Circuit Court reaffirmed that the Agency must ensure that NSPS can be met under the full range of conditions likely to occur:

In order for EPA to demonstrate the achievability of the standard . . . it must: (1) identify variable conditions that might contribute to the amount of expected emissions, and

(2) establish that the test data relied on by the agency are representative of potential industry performance, given the range of variables that affect the achievability of the standard. (Emphasis Added.)

In order to recognize the basic differences between utility and industrial boiler design and operation and their positions in the respective business sectors they serve, EPA must make use of the distinguishing authorities of Sec. 111, Standards of Performance for New Stationary Sources, which clearly confers upon the Administrator the authority to make the necessary distinctions in such cases:

"(2) The Administrator may distinguish among classes, types, and sizes within categories of new sources for the purpose of establishing such standards." (Emphasis Added.)

[(b)(1)(B)(2)]

"... nothing in this section shall be construed to require, or to authorize a modified source to install and operate any particular technological system of continuous emission reduction" to comply with any new source standard of performance. (Emphasis Added.)

[(b)(1)(B)(5)]
Appendix B

Scrubber Technologies and Costs

APPENDIX B-1 Advent of Commercial Scrubbing Technology

To achieve aggressive levels of sulfur dioxide control, sophisticated gas treatment technology had to be developed. Flue gas desulfurization (FGD) is the most common technique employed to date for removing sulfur dioxide (SO₂) from flue gases. All FGD systems are based on acid/base chemistry to capture sulfur. Usually a base compound, e.g. lime or limestone, is slurried in water which is then brought into contact with the acidic SO₂ in the flue gas. The acids and bases react, forming salts such as calcium sulfite or calcium sulfate.

Six basic types of scrubbers have achieved commercial status: wet lime/limestone, lime spray dryers (dry), dual alkali, sodium sulfite, magnesium oxide and aqueous sodium carbonate.²³ By far the most common is the wet lime/limestone—89 of the 119 operating utility systems were of this type in 1984.²⁴ Wet systems can achieve 90% desulfurization. However, these systems yield a sludge which either requires special disposal or further chemical processing.

Dry scrubbers, which are generally less expensive than wet systems, are gaining acceptance. Dry scrubbers (spray dryers) atomize a lime slurry in a special flue gas contacting vessel. The hot flue gas dries and reacts with the lime to form a dry, stable and innocuous solid waste. These systems can achieve 70%—85% desulfurization but are limited by the humidity (approach to saturation) and sulfur content of the flue gas, residence time in the contacting vessel and downstream systems, and the reactivity of the lime. Most commercial dry FGD systems are used in Western power plants burning low-sulfur coal. The TVA has found dry FGD systems are more cost-effective than wet systems and is actively developing dry FGD’s for retrofit applications on high-sulfur eastern coals.²⁵ A 160 MW dry FGD commercial demonstration is being planned by TVA for start-up in 1990.

²⁴National Coal Association, Steam-electric Plant Factors, 1985 ed.
APPENDIX B-2 Summary of Scrubbing Cost Survey

Dry FGD Cases\(^{26}\)

<table>
<thead>
<tr>
<th>Case</th>
<th>Boiler Size (#/hr \times 10^8)</th>
<th>Boiler Efficiency %</th>
<th>Boiler Input (MM BTU)</th>
<th>Capacity Factor %</th>
<th>Fuel Cost(^{27})</th>
<th>FGD Cost(^{27})</th>
<th>Percent FGD/Fuel</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>150</td>
<td>82</td>
<td>183</td>
<td>90</td>
<td>1.25</td>
<td>0.65</td>
<td>+52</td>
<td>1986</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>86</td>
<td>233</td>
<td>85</td>
<td>2.00</td>
<td>0.65</td>
<td>+33</td>
<td>1985</td>
</tr>
<tr>
<td>C</td>
<td>180</td>
<td>86</td>
<td>209</td>
<td>80</td>
<td>1.75</td>
<td>0.64</td>
<td>+37</td>
<td>1984</td>
</tr>
<tr>
<td>D</td>
<td>150</td>
<td>80</td>
<td>188</td>
<td>70</td>
<td>2.02</td>
<td>0.67</td>
<td>+33</td>
<td>1985</td>
</tr>
<tr>
<td>E</td>
<td>150</td>
<td>88</td>
<td>170</td>
<td>70</td>
<td>1.69</td>
<td>1.00</td>
<td>+59</td>
<td>1985</td>
</tr>
<tr>
<td>F</td>
<td>120</td>
<td>83</td>
<td>145</td>
<td>60</td>
<td>1.50</td>
<td>1.05</td>
<td>+70</td>
<td>1985</td>
</tr>
<tr>
<td>G</td>
<td>170</td>
<td>80</td>
<td>215</td>
<td>70</td>
<td>1.75</td>
<td>0.48</td>
<td>+27</td>
<td>1984</td>
</tr>
<tr>
<td>H(^{26})</td>
<td>250</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1986</td>
</tr>
<tr>
<td>I(^{28})</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.71</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

(AVERAGE) 0.73

\(^{26}\)Includes all operating costs charged to the FGD system and annualized FGD capital costs (See Appendix B-3, Case C history reference).

\(^{27}\)In current dollars per million BTU input.

\(^{28}\)Note: This is an actual operating installation; (See Appendix B-3 for details).

\(^{29}\)The ninth case referred to on a previous page involved a wet system at a General Motors site, where a wet FGD system serves 4 boilers with an aggregate input of 384 MM BTU/hr., shows an FGD cost of $2.52 per million BTU input, which more than doubles the price of the coal burned.
March 18, 1986

William B. Marx
CIBO
5795-B Burke Center Parkway
Burke, Virginia 22015

Dear Bill:

I have checked our in-house files for comparisons between oil, gas and coal fired industrial boiler economics. Unfortunately, there was not as much there as I originally thought. We have no data on industrial pulverized coal or stoker boilers with FGD systems. A rule of thumb (Coffin, R.D., Power, October, 1984) estimates dry scrubber capital costs at $5-10/LB of steam for boilers above 200,000 LB/HR. Coffin also provides cost curves for various kinds of steam plants. I have attached this article from Power for your review.

The one in-house study we have compares a gas fired boiler to a circulating fluid bed combustor (CFB). An economic summary is shown in Table I. As you would expect, capital related costs dominate (shown below) the cost differentials, making gas more economical up to about $4.05/MMBTU.

<table>
<thead>
<tr>
<th></th>
<th>CFB</th>
<th>$/MLB</th>
<th>%</th>
<th>GAS</th>
<th>$/MLB</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Costs</td>
<td>1.81</td>
<td>27.5</td>
<td>3.92</td>
<td>69.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Capital Related O.C.</td>
<td>0.94</td>
<td>14.3</td>
<td>0.24</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Related O.C.</td>
<td>4.01</td>
<td>4.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Operating Costs</td>
<td>2.57</td>
<td>39.1</td>
<td>0.65</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Charge</td>
<td>6.58</td>
<td>100.0</td>
<td>5.64</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On a pure operating cost basis, coal is more economical than gas down to $2.60/MMBTU. Thus, those who now have coal facilities will most likely continue to run them unless gas or oil falls below $2.60/MMBTU (about $16/BBL of resid, delivered). However, there is no incentive for anyone to build new coal fired facilities unless oil and gas prices climb about $4.00/MMBTU. This breakeven price for fuel could be lowered of capital costs for coal are reduced or if special government incentives, such as an investment tax credit, are enacted.

To get a feel for the impact of adding an FGD to a stoker boiler, I simply used the capital costs shown in the 1984 Coffin Power article for a stoker, with and without an FGD. FGD costs were assumed to be $15/LB of steam. Compliance coal for the no FGD stoker was assumed to be $1.80/MMBTU and $1.70/MMBTU for the stoker with the FGD. Ash disposal costs were kept the same as the CFB case. Chemical and power costs were increased by 15% for the FGD case vs. the non-FGD case. The FGD used lime at $50/ton at Ca/S of 1.2. All other costs were kept the same. With these assumptions, the FGD adds about $0.50/MLB to the total costs of steam generation. In addition, these data show that a new compliance coal stoker (<1.2 %SO2/MMBTU) should be able to remain competitive with gas or oil down to $2.85/MMBTU. Enacting any kind of stringent sulfur capture law will quickly make stoker firing uneconomical in today's environment.

continued
The above costs are rather approximate, with little back-up data. It would be preferable to use publicly available cost estimates or other sources with more detail. However, if none are available, these figures illustrate the basic economics of steam production and the impacts of further sulfur regulations.

Please advise if I can be of further assistance.

Sincerely,

E. T. Robinson
Technical Advisor

TABLE I
Comparison of Gas Fired and CFB Boiler Costs

<table>
<thead>
<tr>
<th></th>
<th>CFB</th>
<th>GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOILER SIZE</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>CAPITAL COSTS</td>
<td>20.20</td>
<td>5.15</td>
</tr>
<tr>
<td>CAPITAL COSTS #/LB OF STEAM</td>
<td>135</td>
<td>34</td>
</tr>
<tr>
<td>OPERATING FACTOR %</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>OPERATING COSTS</td>
<td>$430/yr</td>
<td>$370/yr</td>
</tr>
<tr>
<td>FUEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COAL #1.25/MMBTU</td>
<td>1.74</td>
<td>1.47</td>
</tr>
<tr>
<td>GAS #3.25/MMBTU</td>
<td>0.90</td>
<td>0.85</td>
</tr>
<tr>
<td>LIME STONE #117/1</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>ASH @ 115/1</td>
<td>0.25</td>
<td>0.21</td>
</tr>
<tr>
<td>TOTAL FUEL COSTS</td>
<td>2.14</td>
<td>1.81</td>
</tr>
<tr>
<td>D & M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANPOWER</td>
<td>0.49</td>
<td>0.41</td>
</tr>
<tr>
<td>CHEMICALS, POWER, SUPPLIES</td>
<td>1.00</td>
<td>0.45</td>
</tr>
<tr>
<td>TAXES & INSURANCE @ 12.5%</td>
<td>0.61</td>
<td>0.15</td>
</tr>
<tr>
<td>TOTAL D & M</td>
<td>3.61</td>
<td>2.25</td>
</tr>
<tr>
<td>TOTAL OPERATING COSTS</td>
<td>4.75</td>
<td>4.01</td>
</tr>
<tr>
<td>CAPITAL CHARGE @ 15%</td>
<td>7.70</td>
<td>6.39</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>7.79</td>
<td>6.39</td>
</tr>
</tbody>
</table>

TABLE II
Comparison of Gas Fired, Stoker and CFB Boiler Costs

<table>
<thead>
<tr>
<th></th>
<th>OLD BGN</th>
<th>CFB</th>
<th>NEW BGN</th>
<th>CFB</th>
<th>OLD BGN</th>
<th>GAS</th>
<th>NEW BGN</th>
<th>CFB</th>
<th>OLD BGN</th>
<th>GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOILER SIZE</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPITAL COSTS</td>
<td>20.28</td>
<td>12.75</td>
<td>19.5</td>
<td>5.13</td>
<td>19.5</td>
<td>5.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPITAL COSTS #/LB OF STEAM</td>
<td>135</td>
<td>85</td>
<td>70</td>
<td>34</td>
<td>70</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATING FACTOR %</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATING COSTS</td>
<td>$430/yr</td>
<td>$410/yr</td>
<td>$320/yr</td>
<td>$380/yr</td>
<td>$320/yr</td>
<td>$380/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUEL</td>
<td></td>
</tr>
<tr>
<td>COAL #1.25/MMBTU</td>
<td>1.74</td>
<td>1.47</td>
<td>1.27</td>
<td>2.37</td>
<td>2.60</td>
<td>2.37</td>
<td>2.50</td>
<td>2.12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GAS #3.25/MMBTU</td>
<td>0.90</td>
<td>0.95</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>LIME STONE #117/1</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>ASH @ 115/1</td>
<td>0.25</td>
</tr>
<tr>
<td>TOTAL FUEL COSTS</td>
<td>2.14</td>
<td>1.98</td>
<td>2.17</td>
<td>3.26</td>
<td>3.26</td>
<td>3.26</td>
<td>2.56</td>
<td>2.31</td>
<td>2.56</td>
<td>2.31</td>
</tr>
<tr>
<td>D & M</td>
<td></td>
</tr>
<tr>
<td>MANPOWER</td>
<td>0.49</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.28</td>
<td>0.24</td>
</tr>
<tr>
<td>CHEMICALS, POWER, SUPPLIES</td>
<td>1.00</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.70</td>
<td>0.59</td>
</tr>
<tr>
<td>TAXES & INSURANCE @ 12.5%</td>
<td>0.61</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>TOTAL D & M</td>
<td>3.61</td>
<td>2.20</td>
<td>2.17</td>
<td>1.96</td>
<td>1.92</td>
<td>1.96</td>
<td>1.82</td>
<td>1.76</td>
<td>1.26</td>
<td>1.07</td>
</tr>
<tr>
<td>TOTAL OPERATING COSTS</td>
<td>4.75</td>
<td>3.40</td>
<td>4.32</td>
<td>4.18</td>
<td>4.32</td>
<td>4.18</td>
<td>4.38</td>
<td>4.14</td>
<td>3.89</td>
<td>3.98</td>
</tr>
<tr>
<td>CAPITAL CHARGE @ 15%</td>
<td>7.70</td>
<td>6.39</td>
<td>6.19</td>
<td>5.38</td>
<td>6.19</td>
<td>5.38</td>
<td>6.18</td>
<td>5.38</td>
<td>3.77</td>
<td>3.65</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>7.79</td>
<td>6.59</td>
<td>6.37</td>
<td>5.81</td>
<td>6.37</td>
<td>5.81</td>
<td>6.16</td>
<td>5.85</td>
<td>6.67</td>
<td>5.94</td>
</tr>
</tbody>
</table>

BREAKDOWN GAS PRICE #/MMBTU | 4.64 | 3.39 | 2.85 | 3.25
FIRST ANNUAL
FLUIDIZED BED CONFERENCE
SPONSORED BY THE TECHNICAL COMMITTEE

DEC. 3-4, 1985
A COMPARISON OF CIRCULATING FLUID BED, BUBBLING FLUID BED, PULVERIZED COAL AND SPREADER STOKER POWER PLANTS

A COMPARISON OF ELUVIUM BED SPREADER STOKER AND PULVERIZED COAL FIXED UNITS

In this paper a comparison is made of technical and economic aspects of burning coal in fluid bed, spreader stoker and pulverized coal fired boilers. Operating characteristics are reviewed for each of the combustion processes for a 200,000 lb. per hour unit under like operating conditions.

COMBUSTION PROCESSES:

Of the several types of stokers available for coal combustion, a type commonly used is the spreader stoker. It is equipped with a set of rotating feeders located at the boiler front which continuously throw coal toward the rear where it is spread across the entire furnace width onto a traveling grate. Some of the coal burns in suspension, while the remainder falls and is burned on the grate. The grate generally travels from the back of the furnace to the front, the coal being burned in a layer having a thickness in the range of 2-1/2 to 5 inches. Combustion is completed at the front and ash is continuously discharged over the front end of the traveling grate into the ash pit. The grate speed can be varied to accommodate variations in fuel characteristics, while the rate of feed may be varied to unit load range.

In a pulverized coal (PC) fired boiler, coal is generally routed from overhead coal bunkers through feeders into the pulverizers. The pulverizers grind the coal to fine consistency, the size of which can be controlled, typically so that 60-75% can pass through a 200 mesh screen. Hot primary air is used to dry the coal in the pulverizer and convey it to the burner where it is emitted into the furnace to burn totally in suspension. The coal/air mixture burns such the same as oil or gas.

In the fluidized bed combustion process, air is blown up through a bed consisting of coal and either limestone, sand, or other inert bed material. Combustion takes place in a turbulent mixing of the particles created by the gas flow through the bed. It is this turbulent mixing which gives the appearance of a boiling fluid.

There are two (2) general types of fluid beds, - bubbling (BFB) and circulating (CFB). In the bubbling bed, the gas velocity is controlled to minimize the entrainment of particles in the gas stream. The hot gases exit the bubbling bed directly into the furnace or heat recovery area. The circulating bed can use higher gas velocities which has the effect of entraining the hot particles into the gas stream. From the circulating bed, the particle
iaden gases pass through the furnace and into cyclones or other mechanical separators. The particles are collected in the separator and returned to the bed for completion of combustion, with the gases passing to further heat recovery and to the stack.

OPERATING CHARACTERISTICS:

Coal Sizing and Evaporation Requirements:

Coal size requirements differ greatly depending on the combustion process. The coal typically supplied by the spreader stoker vendor has a maximum size, and a limit on the amount of fines. Exceeding the limits imposed by the manufacturer increases the possibility of carryover and increased levels of unburned combustibles. Most pulverized coal specifications require a top size, with no restrictions on fines. Fluid bed coal requirements generally have a top size limit, and generally do not limit fines unless the EFB has overshot feed.

The following table summarizes typical requirements for coal sizing:

<table>
<thead>
<tr>
<th>Typical Coal Sizing</th>
<th>Stoker</th>
<th>PC</th>
<th>CFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum size:</td>
<td>1-1/4"</td>
<td>1-1/4"</td>
<td>1/8 to 3/8"</td>
</tr>
<tr>
<td>Limit</td>
<td>3/4 to 1"</td>
<td>1-1/4"</td>
<td>1/8"</td>
</tr>
<tr>
<td>Fines limits:</td>
<td>8X40 Mesh</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Of the three combustion systems, the pulverized unit requires the least coal preparation, generally accepting run-of-mine coal at the site with a minor amount of crushing to reduce top sizing to permit entrance to the pulverizer. The circulating fluid bed unit requires the next level of preparation, usually requiring reduction in sizing to one half to three quarter inch. The bubbling fluid bed requires reduction to as little as 3/8". The sizing can sometimes be accomplished by on site crushing, but may require special equipment (high pulverizing). Dryers are typically required for bubbling bed units. The stoker fired unit is concerned with both top sizing and the amount of fines. Double screened and washed coal, called "stoker coal", is offered by coal suppliers but at a premium cost. In the past, this extreme was resorted to in applications to reduce dust loading to mechanical collectors. With almost universal use of baghouses and precipitators for improved fly ash collection, there are stoker units in operation using minor preparation, such as run-of-mine run through an on site crushe, with little or no differential in cost over coal used for the other combustion processes. Justification for washing should be an economic one applying to all combustion processes.

Coal Characteristics:

All of the combustion processes under consideration are reasonably tolerant to a wide range of coals. However, there are individual characteristics for each. The stoker unit will burn a wide range of coals, from lignite to bituminous, without regard to swelling indices and hardness, and with low regard for fouling. Since the feeders are volumetric, capacity is affected by coal BTU value, and slagging may occur if the coal is outside design limits for the unit. Pulverized coal fired units are sensitive to several design criteria, such as hardness, slagging, fouling, and moisture. PC units must be designed for the specific coal to be used. Except for the requirement for predrying, and the sizing of crushers for some bubbling bed types, the fluid bed units will burn almost any type of coal, including very low grade types, having high sulfur content. For all units, reduction in BTU content will affect unit capacity.

Boiler Efficiency:

In determining the boiler efficiency of each type of unit, there are a number of factors to consider. The three (3) main factors are unburned combustibles, excess air and exit flue gas temperature. PC and fluid beds can generally be designed for lower excess air for satisfactory operation than can the stoker units. Excess air varies from full load to minimum load. Unburned combustible will vary on a stoker depending on the level of ash re-injection. The levels as stated by the manufacturer are in accordance with a mandatory trade standard. The unburned combustible for stokers, and for PC units are well established and can be predicted for a particular design condition. There is little history for FBC units to corroborate stated values in relation to actual values for unburned combustibles. Early units had up to 10X unburned carbon.

Flue gas temperatures can be similar for all types of units since this depends on the selection of heat traps. Flue gas temperatures can be in the range of 300 to 350 degrees F.

The net effect of these characteristics is that PC units generally have the highest efficiency; FBC and stokers typically have stated efficiencies in the same general range. From historical data, the actual day to day average operating efficiencies are often less than the stated values.
The following table summarizes response to load for the combustion processes:

<table>
<thead>
<tr>
<th>Turndown Ratio and Load Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoker</td>
</tr>
<tr>
<td>Turndown Ratio</td>
</tr>
<tr>
<td>Load response</td>
</tr>
<tr>
<td>Time Unit</td>
</tr>
</tbody>
</table>

(Some BFB units are offered with better load responses)

Auxiliary Power Requirements:

Power requirements for the three (3) types of units will vary widely. The fluid bed units will have the highest horsepower requirements due to high pressure forced draft fans needed to fluidize the bed and for the power used for moving the gases through the cyclones. The pulverized coal unit will be high in comparison to a stoker unit but will be less than a fluid bed unit. The additional power requirements of the pulverized unit compared to the stoker are consumed in grinding and conveying the coal.

Capacity Ranges:

Pulverized units have been designed for steaming capacities as low as 60,000 lbs. per hour for small industrial units to over 10 million lbs. per hour for utility applications. Stoker fired units are supplied primarily to the industrial market in sizes ranging from 10,000 to 400,000 lbs. per hour. The selection of PC units for the lower limit of sizes is dictated generally by the size of the fluid units which is usually limited to units with capacities of over 1 million lbs. per hour. When the fluid bed demonstrates a competitive position and more experience is gained, the size of fluid bed units supplied in the U.S. market is expected to increase.

Other Considerations:

One of the early difficulties experienced with fluidized bed units was with coal feeding systems. Attempts have been made to feed coal directly into the bed and over the bed using spreader stoker feeders. Each manufacturer has developed unique feeding systems which are currently being offered as solutions to the feeding problems. A history of successful operation is needed to demonstrate performance.
Control systems for stokers have generally been much simpler than either the pulverized or fluid bed units. Stoker control systems are becoming more complex with the addition of O2 trim and combustibles analyzers designed to improve efficiency. This refinement may be rewarded by higher efficiencies. Operation of a stoker requires that continuous attention be paid to the combustion process to ensure high efficiency and prevent malfunction. However, the forgiving nature of the stoker unit permits operation with relatively unsophisticated operators. Controls for a pulverized unit typically include automatic burner management systems in addition to combustion controls which are generally of a higher degree of sophistication. These systems monitor both ignition and main fuel, and are usually designed for both automatic start-up and shut-down. Fluid bed units also require relatively complex controls. Much of the fluid bed controls are concerned with maintaining bed temperature and controlling load following. Operating bed temperature is critical and must be kept lower than the ash fusion point of approximately 2000 °F, in order to avoid bed operation problems.

Auxiliary Systems and Equipment

Many of the auxiliary systems and much of the equipment required for a power plant installation are independent of the type of combustion process. Included in this category are the turbine-generator unit, condenser, condenser circulating water system, cooling tower, feedwater heaters, boiler feed pumps, and feedwater treatment. The price differentials for these items are of minor significance in comparative cost analysis, and are not included in this paper.

The boiler designer generally has two (2) methods for reducing stack temperature - the use of an air preheater or an economizer. The heat trap selection will depend on the coal burned, the combustion process employed, temperature of incoming feedwater, allowable flue gas temperature and outlet furnace temperature. In stoker firing the incoming air temperature is limited because of grate metal temperature limits to a maximum value in the range of 350 °F. Most stoker installations, therefore, have only an economizer. However, some installations use both. In a pulverized coal fired installation, the process must be designed so as to dry the coal and provide a controlled temperature of the coal/air mixture to the furnace. Use of air preheaters is thus mandated in such installations. Economizers may be used in conjunction, depending on other factors. The selection of heat recovery is specific to each process, and in this paper are considered in the overall pricing with no specific differentials applied.

Systems and equipment which are influenced by the combustion process include building size, ash handling, coal handling, fans, instruments and controls, electrical equipment, piping, and wiring. In changing the combustion process, some of these systems will vary in physical extent while others differ in basic design. In either case, the total installed cost differentials between combustion processes can be significant. The cost differentials pointed out in this report should not be interpreted as being universally applicable, but rather typical of some installations. Physical limitations and inherent process requirements may exist which would alter the differentials that are described in this paper.

The building volume required for the pulverized coal unit is larger than that needed for a stoker fired unit of equivalent rating because of the inherent furnace design requirements, and space required for the pulverizers. The fluid bed unit may require a building of even larger size due to the bed material re-injection and handling system.

The stoker fired unit generally requires the least sophistication in instrument and controls systems, coal handling, and coal feed system. Consequently, they require the least amount of wiring and equipment. The fluid bed will generally require the most extensive electrical system.

The ash system for all of the processes can be very similar in type. The fluid bed system must be designed for a larger capacity in order to handle the higher quantities resulting from the spent bed material.

6.8 POLLUTION

The three (3) primary air pollutants resulting from the combustion of coal are sulfur oxides, nitrogen oxides, and particulates. The various methods of control for each of these pollutants are addressed in this section.

Flue Gas Desulfurization

Neither the stoker-fired boiler nor the pulverizer unit can be designed presently for reducing the amount of sulfur oxide exiting the boiler. Control of sulfur oxide from these units requires the use of a removal system located downstream of the boiler. Removal has historically been with some type of gas scrubber. There are two (2) general types of scrubbers - throw away systems and by-product systems. The three (3) prevalent types of systems being used today are - dry scrubbing, lime/limestone and dual alkali. All three (3) are throw away systems. There are a number of byproduct systems which may be attractive for large units or in specific applications.
The lime and limestone systems use a slurry of calcium oxide and calcium carbonate respectively to absorb SO2 in a wet absorption tower. The products of this reaction include calcium sulfite, calcium sulfite, and unreacted lime. The product slurry is then precipitated in a settling tank and disposed of as a sludge. The tank overflow is recycled and a small slip stream is disposed of.

In the dual alkali system, the absorption of SO2 and formation of waste products occur in different systems. A sodium based alkali solution is used to absorb the SO2. The effluent from the absorber is sent to a reactor tank where it is reacted with slaked lime for regeneration of the sodium scrubbing medium. Insoluble calcium salts are formed in the reactor tank. The slurry stream, containing the insoluble calcium sulfite/sulfate solids, is sent to a thickener where the solids are concentrated for disposal. For the lime, limestone, and dual alkali systems, the wastes can be oxidized to calcium sulfate, which is suitable for disposal in landfills.

In the dry scrubbing system, the flue gas is intimately mixed with a slurry of reagent such as lime. In the presence of lime, moisture and fly ash, a high percentage of the gaseous SO2 is converted into calcium sulfite and calcium sulfate. The resultant mixture of reaction solids and fly ash can be collected in a dry state by either an electrostatic precipitator or baghouse.

For this comparison, dry scrubbing has been used.

In Bed Desulfurization:

The development of the fluid bed provides a system which allows for SO2 reduction during the combustion process. Early development showed that using limestone as the bed material greatly reduced sulfur emissions. Two (2) reactions occur in the process. The lime and oxygen react to form calcium oxide.

This calcium oxide then reacts with the sulfur dioxide to form calcium sulfate. A combustion temperature of 1500 F to 1600 F provides for the greatest efficiency of sulfur capture.

NOx Control:

Because of the low bed temperature, nitrogen oxide emissions from the fluid bed unit are low in comparison to pulverized units. Fluid bed units are represented to be capable of nitrogen oxide emissions as low as 0.3 lbs. per million BTU, although there is little commercial operating history. Pulverized units have demonstrated they can reach nitrogen oxide emissions levels of 0.7 lbs. per million BTU using low NOx burners. NOx emissions from stoker units are typically in the same range.

Particulate Control:

Compliance with almost all air pollution agency regulations require the use of either electrostatic precipitators or baghouses for the types of firing under consideration. Determination of the range of costs to be utilized in the boiler must be completed before an intelligent decision can be made concerning the type of system to be installed for best overall cost, maintenance, and system flexibility.

For the purposes of this comparison, all units are assumed to be equipped with baghouses.

Capital Cost Comparisons:

Much of the literature on the subject of cost comparison of fluid beds with other systems mentions the inherent small size of the fluid bed heat exchange process and concludes that fluid bed is low in cost when compared with conventional boilers. This presumes mass production and marketing of the product. In order to determine actual comparative costs, manufacturers' prices for units of the three types, (stoker, FL, FBC), have been solicited and are compared.

Since there is a divergence of prices on each type in the competitive market place, it is inconclusive to establish the exact price for each as a concrete number. Prices have been compared on boilers of the different types for identical function and as nearly as possible, on the same extent, type, and quality of ancillary equipment.

Prices were in the following ranges for the boiler on a bunker to stack outlet, erected basis, exclusive of civil works, and other balance of plant costs:

\[
\begin{array}{cccccc}
\text{Capital Cost Comparisons} \\
\hline
\text{NO Sulfur Removal} & \text{Low} & \text{High} & \text{Median} & \text{Average} \\
\hline
\text{Circ. Fl. Bed} & 9,590,000 & 13,090,000 & 11,340,000 & 11,520,000 \\
\text{Bub. Fl. Bed} & 7,590,000 & 9,340,000 & 6,465,000 & 6,503,000 \\
\text{Stoker Fired} & 4,460,000 & 6,160,000 & 6,350,000 & 6,350,000 \\
\text{Pulverized Coil} & 6,040,000 & 8,115,000 & 7,077,500 & 7,098,750 \\
\hline
\text{WITH Sulfur Removal} \\
\hline
\text{Circ. Fl. Bed} & 9,590,000 & 13,090,000 & 11,340,000 & 11,520,000 \\
\text{Bub. Fl. Bed} & 7,590,000 & 9,340,000 & 8,465,000 & 8,503,000 \\
\text{Stoker Fired} & 5,760,000 & 7,860,000 & 7,910,000 & 8,050,000 \\
\text{Pulverized Coil} & 7,340,000 & 10,115,000 & 8,767,500 & 8,798,750 \\
\end{array}
\]
The prices tabulated on the previous page are for the boiler only. Adjustments were made to those prices to account for comparative total cost in place, including balance of plant. This information is summarized below:

<table>
<thead>
<tr>
<th>Comparative Installed Costs</th>
<th>NO SULFUR REMOVAL</th>
<th>WITH SULFUR REMOVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoker</td>
<td>EC</td>
<td>EB</td>
</tr>
<tr>
<td>Boiler, in place</td>
<td>-5,500,000</td>
<td>-4,700,000</td>
</tr>
<tr>
<td>Building costs</td>
<td>-120,000</td>
<td>-100,000</td>
</tr>
<tr>
<td>Materials handling</td>
<td>-100,000</td>
<td>-100,000</td>
</tr>
<tr>
<td>Controls and instruments</td>
<td>-100,000</td>
<td>-25,000</td>
</tr>
<tr>
<td>Piping and Mech. Work</td>
<td>-50,000</td>
<td>-15,000</td>
</tr>
<tr>
<td>Wiring and Elect. Work</td>
<td>-30,000</td>
<td>-5,000</td>
</tr>
<tr>
<td>Comparative Cost</td>
<td>-5,900,000</td>
<td>-4,885,000</td>
</tr>
</tbody>
</table>

DEGERING DATA AND COST FACTORS:

Various data and factors used in calculating costs and in comparative analysis follow:

<table>
<thead>
<tr>
<th>Operating Data and Cost Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Conditions: 800 psig, 850°F</td>
</tr>
<tr>
<td>Feedwater Temp. 300°F</td>
</tr>
<tr>
<td>Load: 75% fixed, 25% variable</td>
</tr>
<tr>
<td>Peak 800,000 lbs/hr.</td>
</tr>
<tr>
<td>Winter average 160,000 lbs/hr.</td>
</tr>
<tr>
<td>Summer average 160,000 lbs/hr.</td>
</tr>
<tr>
<td>Annual Average 170,000 lbs/hr.</td>
</tr>
<tr>
<td>High Sulfur Coal 3X</td>
</tr>
<tr>
<td>12,000 BTU/lb, 9.9% Ash, $48/ton</td>
</tr>
<tr>
<td>Low Sulfur Coal 1X</td>
</tr>
<tr>
<td>12,445 BTU/lb, 9.9% Ash, $50/ton</td>
</tr>
<tr>
<td>Limestone</td>
</tr>
<tr>
<td>$15/ton, 85% pure</td>
</tr>
<tr>
<td>Lime</td>
</tr>
<tr>
<td>$56/ton, 90% pure</td>
</tr>
<tr>
<td>Inert bed material</td>
</tr>
<tr>
<td>$2/ton (sand)</td>
</tr>
<tr>
<td>Ash and sludge disposal</td>
</tr>
<tr>
<td>$6/ton</td>
</tr>
<tr>
<td>Electrical Power</td>
</tr>
<tr>
<td>$0.05/kwh</td>
</tr>
</tbody>
</table>

Other pricing and operating costs from various estimating data bases.

An attempt has been made to quantify the differences for the three types of firing for two modes of operation, with and without flue gas desulfurization. Representative values for these differences are summarized on the next page.
Operating Cost Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Stoker</th>
<th>PC</th>
<th>BFB</th>
<th>CFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of unprepared fuel, $/ton</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cost of fuel prep., $/ton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Cost of fuel as used, $/ton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>B</td>
<td>56</td>
<td>50</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>62</td>
<td>50</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>Efficiency, %</td>
<td>82</td>
<td>86</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>Annual fuel cost, $/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>107,140</td>
<td>-107,140</td>
<td>218,860</td>
<td>Base</td>
</tr>
<tr>
<td>B</td>
<td>617,380</td>
<td>-107,140</td>
<td>561,910</td>
<td>Base</td>
</tr>
<tr>
<td>C</td>
<td>1,188,800</td>
<td>-107,140</td>
<td>561,910</td>
<td>Base</td>
</tr>
<tr>
<td>Operations labor, $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-35,000</td>
<td>-35,000</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Maintenance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel burning system, $</td>
<td>-25,000</td>
<td>9,000</td>
<td>-5,000</td>
<td>Base</td>
</tr>
<tr>
<td>Materials handling, $</td>
<td>-10,000</td>
<td>-10,000</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Furnace, $</td>
<td>-15,000</td>
<td>-15,000</td>
<td>-10,000</td>
<td>Base</td>
</tr>
<tr>
<td>Auxiliary Power, $</td>
<td>-186,890</td>
<td>-89,060</td>
<td>93,290</td>
<td>Base</td>
</tr>
<tr>
<td>Bed Material, $</td>
<td>-46,500</td>
<td>-46,500</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Ash disposal, $</td>
<td>-139,590</td>
<td>-142,130</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Total Comp. cost, $/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-350,840</td>
<td>-453,830</td>
<td>291,150</td>
<td>Base</td>
</tr>
<tr>
<td>B</td>
<td>160,000</td>
<td>-453,830</td>
<td>640,200</td>
<td>Base</td>
</tr>
<tr>
<td>C</td>
<td>670,820</td>
<td>-453,830</td>
<td>640,200</td>
<td>Base</td>
</tr>
</tbody>
</table>

WITH SULFUR REMOVAL

<table>
<thead>
<tr>
<th></th>
<th>Stoker</th>
<th>PC</th>
<th>BFB</th>
<th>CFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of fuel as used, $/ton</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Efficiency, %</td>
<td>82</td>
<td>86</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>Annual fuel cost, $/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>96,600</td>
<td>-96,600</td>
<td>211,800</td>
<td>Base</td>
</tr>
<tr>
<td>B</td>
<td>626,360</td>
<td>-96,600</td>
<td>573,800</td>
<td>Base</td>
</tr>
<tr>
<td>C</td>
<td>1,115,120</td>
<td>-96,600</td>
<td>573,800</td>
<td>Base</td>
</tr>
<tr>
<td>Operations labor, $</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel burning system, $</td>
<td>-20,000</td>
<td>-4,000</td>
<td>5,000</td>
<td>Base</td>
</tr>
<tr>
<td>Scrubber</td>
<td>10,000</td>
<td>10,000</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Lime/limestone handling</td>
<td>-5,000</td>
<td>-5,000</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Furnace</td>
<td>-5,000</td>
<td>-5,000</td>
<td>-10,000</td>
<td>Base</td>
</tr>
<tr>
<td>Auxiliary Power, $/yr</td>
<td>-148,060</td>
<td>-59,660</td>
<td>93,290</td>
<td>Base</td>
</tr>
<tr>
<td>Lime/limestone, $/yr</td>
<td>-53,470</td>
<td>-76,870</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Ash and Sludge Disposal, $/yr</td>
<td>-135,500</td>
<td>-145,840</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Bed Material, $</td>
<td>-46,500</td>
<td>-46,500</td>
<td>0</td>
<td>Base</td>
</tr>
<tr>
<td>Total Comparative Cost</td>
<td>-380,320</td>
<td>-490,870</td>
<td>300,090</td>
<td>Base</td>
</tr>
<tr>
<td></td>
<td>B 149,430</td>
<td>-490,870</td>
<td>662,090</td>
<td>Base</td>
</tr>
<tr>
<td></td>
<td>C 672,190</td>
<td>-490,870</td>
<td>662,090</td>
<td>Base</td>
</tr>
</tbody>
</table>

Economic Comparison:

The above capital and operating cost information is summarized in the following tables into a comparison of total costs associated with owning and operating the three types of coal combustion equipment.
Comparative Cost of Ownership

NO SULFUR REMOVAL

<table>
<thead>
<tr>
<th></th>
<th>Stoker</th>
<th>PC</th>
<th>BFB</th>
<th>CFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental Investment</td>
<td>-5,900,000</td>
<td>-4,865,000</td>
<td>-2,900,000</td>
<td>Base</td>
</tr>
<tr>
<td>Annualized Capital Cost (12% of Incremental Investment)</td>
<td>-708,000</td>
<td>-586,200</td>
<td>-348,000</td>
<td>Base</td>
</tr>
<tr>
<td>Comp. Operating Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-300,840</td>
<td>-453,830</td>
<td>291,150</td>
<td>Base</td>
</tr>
<tr>
<td>B</td>
<td>160,000</td>
<td>-453,830</td>
<td>645,200</td>
<td>Base</td>
</tr>
<tr>
<td>C</td>
<td>670,820</td>
<td>-453,830</td>
<td>645,200</td>
<td>Base</td>
</tr>
<tr>
<td>Comp. Total Owner Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-1,058,840</td>
<td>-1,040,030</td>
<td>-56,850</td>
<td>Base</td>
</tr>
<tr>
<td>B</td>
<td>-344,000</td>
<td>-1,040,030</td>
<td>292,800</td>
<td>Base</td>
</tr>
<tr>
<td>C</td>
<td>-37,180</td>
<td>-1,040,030</td>
<td>232,200</td>
<td>Base</td>
</tr>
</tbody>
</table>

WITH SULFUR REMOVAL

<table>
<thead>
<tr>
<th></th>
<th>Stoker</th>
<th>PC</th>
<th>BFB</th>
<th>CFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental Investment</td>
<td>-3,925,000</td>
<td>-2,910,000</td>
<td>-2,900,000</td>
<td>Base</td>
</tr>
<tr>
<td>Annualized capital costs (12% of Incremental Investment)</td>
<td>-471,000</td>
<td>-349,200</td>
<td>-348,000</td>
<td>Base</td>
</tr>
<tr>
<td>Comp. Operating Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-300,830</td>
<td>-490,870</td>
<td>300,000</td>
<td>Base</td>
</tr>
<tr>
<td>B</td>
<td>149,430</td>
<td>-490,870</td>
<td>665,090</td>
<td>Base</td>
</tr>
<tr>
<td>C</td>
<td>679,190</td>
<td>-490,870</td>
<td>665,090</td>
<td>Base</td>
</tr>
<tr>
<td>Comp. Total Owner Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-651,330</td>
<td>-640,070</td>
<td>-47,910</td>
<td>Base</td>
</tr>
<tr>
<td>B</td>
<td>-321,570</td>
<td>-640,070</td>
<td>314,090</td>
<td>Base</td>
</tr>
<tr>
<td>C</td>
<td>208,150</td>
<td>-640,070</td>
<td>314,090</td>
<td>Base</td>
</tr>
</tbody>
</table>

SUMMARY

A. No Sulfur Removal:

1. If sulfur removal is not required and the same fuel will be burned on all units the spreader stoker and PC units are the most economical units to install and operate.

B. With Sulfur Removal:

1. With sulfur removal the spreader stoker and PC units again prove more economical to install and operate than BFB and CFB.
2. The spreader stoker unit is even with PC until a penalty is applied for stoker sized coal. If the penalty gets to approximately $10/ton then the CFB even becomes more economical.
3. If there is any fuel preparation penalty on the BFB the CFB becomes more economical.

C. Advantages and Disadvantages of Conventional and Fluid Bed Units

Stoker Fired Units:

Advantages

- Low capital cost
- Reliability-availability
- Good load response
- Simplicity of operation
- Do not require auxiliary fuels
- Will burn a wide range of coals
- Low maintenance costs
- Low fouling
- Low auxiliary horsepower
- Demonstrated technology

Disadvantages

- Some operator attendance required
- Sensitive to coal sizing and segregation
- Steam outage is unit outage
- Requires auxiliary equipment for sulfur removal
Comments:
With proper particulate control equipment and reinjection, the unit can operate at 2% carbon loss and 85% efficiency, using crushed run-of-mine coal.

Pulverized Coal Units:

Advantages
- Minimum operator attendance
- High predictable efficiency consistently
- Excellent load response
- Burns wide range of fuels
- Minimum fuel preparation
- Can burn fuels in combination
- Excellent turnaround
- High availability and reliability
- Demonstrated technology

Disadvantages
- Requires auxiliary fuels
- Maintenance on fuel burning equipment relatively high
- Susceptible to slagging and fouling
- Relatively high auxiliary horsepower
- Must be protected against furnace explosions
- Requires auxiliary equipment for SO2 reduction

Circulating Fluid Bed:

Advantages
- Will burn a wide range of coals and other fuels
- SO2 removal inherent in process
- Acceptable turndown ratio and load response
- Low NOX emissions

Disadvantages
- High capital cost
- High auxiliary horsepower
- High operating and maintenance costs
- Availability uncertain
- Technology relatively new

D. Sensitivity Analysis:
There are various key numbers that when altered will greatly affect the overall economic analysis. They are:

1. Capital costs
 Presently the pricing we have received and developed ourselves shows that CFB and BFB units are quite a bit more costly than PC and spreader stoker units. As the fluid bed manufacturers react to the market place their pricing will approach PC and spreader stoker pricing, when sulfur removal is required.

2. Fuel pricing
 The fluid beds are capable of burning a much wider range of fuels than the PC and stoker units can.
 This could create a lower price for the fuels that will be burned in a fluid bed unit. For the analysis in this paper, approximately 60,000 tons of coal were burned each year. If by using a fluid bed a fuel could be purchased that was $10 less a ton the impact on operating costs is $600,000 per year.
 Also with fuel pricing the cost of special preparation has a major impact on the evaluation. Many stoker people argue that there is no longer a need for special sizing, but many users continue to buy double screened coal.
CONCLUSIONS:

Based on economic comparisons, with or without S02 reduction, and assuming no premium for coal preparation, the spreader stoker and PC units are essentially of equal attractiveness, and a much better selection than either type of fluid bed indicated. Annual savings approximately $1.0 million (with no sulfur reduction) and approximately $850,000 (with sulfur reduction), through the use of the conventional firing methods. These comparisons are using current pricing data bases. It is expected that the fluid bed units will be more competitive in pricing after additional experience is gained, and technology risk is removed from pricing.

The only economic justification for selection of the fluid bed would be if a high premium was expected to be paid for coal preparation cost or a less expensive fuel could be burned.

The stoker or PC units with scrubbers at this time appear to be better selections than fluid bed for S02 reduction. The conventional units have a long history of successful operation. Additional experience is needed with the fluid bed units on S02 removal.

For the units sizes considered in this paper, selection of the circulating fluid bed over the bubbling bed is indicated because of the better performance characteristics. The economic attraction is modest. There are specialized bubbling fluid bed units that may be superior to circulating fluid beds being offered, particularly in the smaller sizes.

The advantages, disadvantages and economics will differ for each application. The ultimate users should evaluate their own situations and determine which combustion method should be used. The only real way to make an exact determination is to solicit firm priced competitive bids with required performance guarantees.
Preliminary Design for the Replacement Of Boilers 1 & 2

for

Iowa State University
Physical Plant
Ames, Iowa

August 1984

83-005-1-005
APPENDIX B-3 Case D (Dry)

PROCEEDINGS

FIRST ANNUAL FLUIDIZED BED CONFERENCE
SPONSORED BY THE TECHNICAL COMMITTEE

DEC. 3-4, 1985

CIBO
COUNCIL OF INDUSTRIAL BOILER OWNERS

WASHINGTON-PLAZA HOTEL • WASHINGTON, D.C. • WILLIAM B. MARX, PRESIDENT
APPENDIX B-3 Case E (Dry)

ECONOMICS OF FLUID BED, PULVERIZED COAL
AND SPREADER STOKER STEAM GENERATORS

by

R. A. MALONE
BLACK & VEATCH
ENGINEERS-ARCHITECTS

PRESENTED TO
COUNCIL OF INDUSTRIAL BOILER OWNERS
FLUIDIZED BED SEMINAR
DECEMBER 3-4, 1985
UNIVERSITY OF MISSOURI
Facilities Management & Planning

Final Phase II Report

RECOMMENDATIONS FOR IMPROVEMENTS
COGENERATION POWER PLANT AND
DISTRIBUTION FACILITIES

at the
University of Missouri – Columbia

July 23, 1985
APPENDIX B-3 Case G (Dry)

THE HUBINGER COMPANY

Keokuk, Iowa

Part B Study for

COAL-FIRED BOILER AND ELECTRIC COGENERATION SYSTEM

May 31, 1984
ATTACHED IS THE DATA ON OUR SULFUR SCRUBBING COST AT AMTELL BOX BOARD. THE TERM 'CURRENT COAL' REFERS TO A 2.2-2.4% SULFUR, 12,000 BTU, 15% RHA COAL. THE TERM 'FUTURE' REFERS TO A 1% SULFUR, 10% RHA, 12,500 BTU LBS COAL.

I trust this data will be of some help in your project. Please give me a call if I can answer any specific questions that arise.

Sincerely,

Wally Bradley

NOTE:
In a telephone conversation with Mr. Bradley 4/4 I was told the capital costs for FGD and fabric filter was $2.3 million, allowing $300,000 for the fabric filter, leaves an FGD capital cost of $2 million.
Appendix C

Letter to Fred L. Porter from William B. Marx

Mr. Fred L. Porter
Standards Development Branch
Emission Standards and Engineering Division
United States Environmental Protection Agency
Office of Air Quality Planning and Standards
Research Triangle Park
North Carolina 27711

July 30, 1985

Dear Fred:

In response to your letter of June 18, 1985 on the CIRO boiler survey, enclosed please find the following documents:

1. Boiler "Expansion-Replacement" Survey, 27 case histories;
2. Boiler "Expansion-Replacement" Survey, summary sheet;
3. New Appendix A, showing revised aggregate boiler capacity and input values.

Appendix A is made up from the replacement cases which were able to report comparative SO₂ emissions. Due to a calculation error, the aggregate net boiler capacity and input values swung from a small decrease to a small increase. The net boiler population reduction and reduction in aggregate SO₂ emissions, however, remain unchanged.

Finally, we are transmitting a report on agricultural wastes, "A Case History of Fertilizer Emissions from Agricultural Waste Fuel", by Gary O. Johnson of Procter & Gamble, which the Agency will wish to review and have placed in the docket.

Please call with any questions you may have.

Sincerely,

William B. Marx

CC: C. L. Elkins
 J. M. Campbell
 H. Shelby

11222 Sandler Drive, Falls Station, Virginia 22320 • (703) 256-8042
COUNCIL OF INDUSTRIAL BOILER OWNERS

BOILER REPLACEMENT SURVEY

The information tabulated below is derived from a CIBO survey conducted in September 1984, to determine the replacement/expansion ratio of new boiler installations. The information covers: a) installations finished or in process back to 1979; b) installations not yet completed but for which funds have been appropriated; c) future installations projected to 1988.

The responses show a 4.1:1 replacement/expansion ratio; i.e., approximately 80% of new boilers are for replacement purposes. The fuels of the replaced and new boilers, and the number of boilers involved, are as follows:

Fuel "Conversions"

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Oil</td>
<td>Coal 22</td>
</tr>
<tr>
<td>43 Coal</td>
<td>Coal 21</td>
</tr>
<tr>
<td>7 Oil</td>
<td>Wood 3</td>
</tr>
<tr>
<td>6 Oil</td>
<td>Gas 2</td>
</tr>
<tr>
<td>5 Wood</td>
<td>Wood 2</td>
</tr>
<tr>
<td>11 Coal</td>
<td>Wood 11</td>
</tr>
<tr>
<td>1 Gas</td>
<td>Coal 1</td>
</tr>
</tbody>
</table>

Totals: 117

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62</td>
</tr>
</tbody>
</table>

Thus, 117 boilers are being replaced by 62 new units, a decrease of 55 boilers. Over 95% of the boilers that are being retired are oil fuelled rather than natural gas.

The data from the 9 companies providing emissions data show that the replacement process, by itself, will result in a decrease in SO_2 emissions, independent of any NSPS:

Replacement vs. New Boilers

<table>
<thead>
<tr>
<th>No. of Boilers</th>
<th>New</th>
<th>Net Result (Decrease)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>29</td>
<td>(25)</td>
</tr>
</tbody>
</table>

Aggregate Capacity

<table>
<thead>
<tr>
<th>lb/hs X 1000</th>
<th>7,080</th>
<th>7,630</th>
<th>550</th>
</tr>
</thead>
</table>

Aggregate Input

<table>
<thead>
<tr>
<th>kw/hr</th>
<th>8,300</th>
<th>8,870</th>
<th>570</th>
</tr>
</thead>
</table>

Total SO_2 Emissions (tons/yr)

<table>
<thead>
<tr>
<th>36,382</th>
<th>26,856</th>
<th>(9,526)</th>
</tr>
</thead>
</table>

July 1985

Boiler Expansion-Replacement Survey

<table>
<thead>
<tr>
<th>Case</th>
<th>Units</th>
<th>Capacity</th>
<th>Units</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>150</td>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>150</td>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>200</td>
<td>2</td>
<td>200</td>
</tr>
</tbody>
</table>

Grand Total: 143, 30,594

* In thousands of pounds per hour of boiler heating capacity each.
** This is aggregate capacity of 16 units.
NEW BURNERS

B. INSTALLATIONS IN PROGRESS (1979)

C. INSTALLATIONS PROPOSED (1979)

A. INSTALLATIONS CONPLETED OR IN PROCESS (BACK TO 1973)

1. At thousands of pounds per hour, i.e. input 100 MMBtu
2. Include mixtures, denoting individual fuels
3. Tons per year of each pollutant

20 2-Digit SIC

A. INSTALLATIONS FINISHED OR IN PROGRESS (BACK TO 1973)

1. At thousands of pounds per hour, i.e. input 100 MMBtu
2. Include mixtures, denoting individual fuels
3. Tons per year of each pollutant

20 2-Digit SIC

A. INSTALLATIONS FINISHED OR IN PROGRESS (BACK TO 1973)

1. At thousands of pounds per hour, i.e. input 100 MMBtu
2. Include mixtures, denoting individual fuels
3. Tons per year of each pollutant

20 2-Digit SIC

** Telephone Report
Boiler Expansion-Replacement Survey

New Boilers

<table>
<thead>
<tr>
<th>Number and Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>Number and Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 340,000 lb/hr</td>
<td>Coal</td>
<td>150% Coal</td>
<td>2463</td>
<td>220</td>
<td>150% Coal</td>
</tr>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1122</td>
</tr>
<tr>
<td>2. 770,000 lb/hr</td>
<td>Fuel, Coal</td>
<td>4320</td>
<td>359</td>
<td>183</td>
<td>1-144,000 lb/hr</td>
</tr>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

Boilers Replaced

| Coal | 220 | 159 |
| 1326 | 270 | 1963 |

A. INSTALLATIONS FINISHED OR IN PROGRESS (BACK TO 1979)

- **1.** 340,000 lb/hr Coal: 150% Coal
- **2.** 770,000 lb/hr Fuel, Coal: 4320 lb/hr, 359 lbs/ft³, 183 lb/hr, 44 lb/hr, 511 lb/hr, 1453 lbs/ft³, 40 lb/hr, 234 lb/hr

B. INSTALLATIONS FINISHED

- **345,000 lb/hr None

C. INSTALLATIONS PROJECTED

- **1981**: Unknown
- **1982**: Possible conversion to coal/liquid fuels for 1-2 million in this size range, independent upon available technology

Notes

- With a boiler capacity > 80,000 lb/hr, i.e., input: 160 MMBtu
- In thousands of pounds/hr, tons
- Include mixtures, denoting individual fuels
- Tons per year of each pollutant

6. Boiler Expansion- Replacement Survey

<table>
<thead>
<tr>
<th>No. and Capacity (lb/hr)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>No. and Capacity (lb/hr)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 340,000 lb/hr, steam</td>
<td>Coal</td>
<td>150% Coal</td>
<td>2-400,000 lb/hr, steam</td>
<td>Gas</td>
<td>220</td>
</tr>
<tr>
<td>2. 770,000 lb/hr, steam</td>
<td>Coal</td>
<td>150% Coal</td>
<td>4-500,000 lb/hr, steam</td>
<td>Gas</td>
<td>220</td>
</tr>
</tbody>
</table>

7. Boiler Expansion- Replacement Survey

<table>
<thead>
<tr>
<th>No. and Capacity (lb/hr)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>No. and Capacity (lb/hr)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. 150,000 lb/hr, steam</td>
<td>Coal</td>
<td>150% Coal</td>
<td>2-500,000 lb/hr, steam</td>
<td>Gas</td>
<td>220</td>
</tr>
</tbody>
</table>

Notes

- With a boiler capacity > 80,000 lb/hr, i.e., input: 160 MMBtu
- In thousands of pounds/hr, tons
- Include mixtures, denoting individual fuels
- Tons per year of each pollutant

8. Boiler Expansion- Replacement Survey

<table>
<thead>
<tr>
<th>No. and Capacity (lb/hr)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>No. and Capacity (lb/hr)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. 150,000 lb/hr, steam</td>
<td>Coal</td>
<td>150% Coal</td>
<td>2-500,000 lb/hr, steam</td>
<td>Gas</td>
<td>220</td>
</tr>
</tbody>
</table>

Notes

- With a boiler capacity > 80,000 lb/hr, i.e., input: 160 MMBtu
- In thousands of pounds/hr, tons
- Include mixtures, denoting individual fuels
- Tons per year of each pollutant

25 2-Digit SEC
9.

BOILER “EXPANSION-REPLACEMENT” SURVEY

New Boilers

<table>
<thead>
<tr>
<th>Number and</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>Number and</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10,000</td>
<td>Coal</td>
<td></td>
<td>130,000</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>1-30,000</td>
<td>Coal</td>
<td></td>
<td>130,000</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>11-150,000</td>
<td>Coal</td>
<td></td>
<td>150,000</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>1-100,000</td>
<td>Coal</td>
<td></td>
<td>150,000</td>
<td>Coal</td>
<td></td>
</tr>
<tr>
<td>11-150,000</td>
<td>Coal</td>
<td></td>
<td>150,000</td>
<td>Coal</td>
<td></td>
</tr>
</tbody>
</table>

INSTALLATIONS FINISHED OR IN PROCESS (FALL 1973)

A. INSTALLATIONS FINISHED OR IN PROCESS (FALL 1973)

- No. 1 Coal Boiler, 150,000 lb/hr
 - SO = 100
 - PM = 10
 - NOx = 120

B. INSTALLATIONS PENDING

1. No. 2 Coal Boiler, 150,000 lb/hr
 - SO = 100
 - PM = 10
 - NOx = 120

C. INSTALLATIONS PROJECTED (TO 1988)

- With a boiler capacity > 50,000 lbs/hr, i.e. input
 - 1. In thousands of pounds/hr, steam
 - 2. Includes mixtures, denoting individual fuels
 - 3. Tons per year of each pollutant

10.

BOILER “EXPANSION-REPLACEMENT” SURVEY

New Boilers

<table>
<thead>
<tr>
<th>Number and</th>
<th>Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>Number and</th>
<th>Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-30,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-150,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-100,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-150,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTALLATIONS FINISHED OR IN PROCESS (FALL 1973)

A. INSTALLATIONS FINISHED OR IN PROCESS (FALL 1973)

- No. 1 Power Boiler, 100,000 lb/hr
 - SO = 100
 - PM = 10
 - NOx = 120

B. INSTALLATIONS PENDING

1. No. 2 Power Boiler, 100,000 lb/hr
 - SO = 100
 - PM = 10
 - NOx = 120

C. INSTALLATIONS PROJECTED (TO 1988)

- With a boiler capacity > 50,000 lbs/hr, i.e. input
 - 1. In thousands of pounds/hr, steam
 - 2. Includes mixtures, denoting individual fuels
 - 3. Tons per year of each pollutant

11.

BOILER “EXPANSION-REPLACEMENT” SURVEY

New Boilers

<table>
<thead>
<tr>
<th>Number and</th>
<th>Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>Number and</th>
<th>Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-30,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-150,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-100,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-150,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTALLATIONS FINISHED OR IN PROCESS (FALL 1973)

A. INSTALLATIONS FINISHED OR IN PROCESS (FALL 1973)

- No. 1 Power Boiler, 100,000 lb/hr
 - SO = 100
 - PM = 10
 - NOx = 120

B. INSTALLATIONS PENDING

1. No. 2 Power Boiler, 100,000 lb/hr
 - SO = 100
 - PM = 10
 - NOx = 120

C. INSTALLATIONS PROJECTED (TO 1988)

- With a boiler capacity > 50,000 lbs/hr, i.e. input
 - 1. In thousands of pounds/hr, steam
 - 2. Includes mixtures, denoting individual fuels
 - 3. Tons per year of each pollutant

12.

BOILER “EXPANSION-REPLACEMENT” SURVEY

New Boilers

<table>
<thead>
<tr>
<th>Number and</th>
<th>Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>Number and</th>
<th>Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-30,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-150,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-100,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-150,000</td>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTALLATIONS FINISHED OR IN PROCESS (FALL 1973)

A. INSTALLATIONS FINISHED OR IN PROCESS (FALL 1973)

- No. 1 Power Boiler, 100,000 lb/hr
 - SO = 100
 - PM = 10
 - NOx = 120

B. INSTALLATIONS PENDING

1. No. 2 Power Boiler, 100,000 lb/hr
 - SO = 100
 - PM = 10
 - NOx = 120

C. INSTALLATIONS PROJECTED (TO 1988)

- With a boiler capacity > 50,000 lbs/hr, i.e. input
 - 1. In thousands of pounds/hr, steam
 - 2. Includes mixtures, denoting individual fuels
 - 3. Tons per year of each pollutant

APPENDIX C
<table>
<thead>
<tr>
<th>New Boilers</th>
<th>Boiler(s) Replaced (If Applicable)</th>
</tr>
</thead>
</table>

A. INSTALLATIONS FINISHED OR IN PROCESS (JAN 76 to 1979)

<table>
<thead>
<tr>
<th>Number and Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>Emissions</th>
</tr>
</thead>
</table>

- 1, 2, 3: In thousands of pounds/steam per year
- 4: In ten tons per year
- 5: In ten tons per year

B. INSTALLATIONS FUTURE

None

C. INSTALLATIONS PROJECTED (FEB 1980)

<table>
<thead>
<tr>
<th>Number and Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>Emissions</th>
</tr>
</thead>
</table>

1. In thousands of pounds/steam
2. In ten tons per year
3. In millions of Btu per year

Notes:

- Based on Preliminary design data
- **Conversion**
B. INSTALLATIONS FINISHED OR IN PROGRESS (BACK TO 1975)

<table>
<thead>
<tr>
<th>Number and Capacity</th>
<th>Fuel</th>
<th>SO, PM and NOx Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coal</td>
<td>120,000 lbs/hr</td>
</tr>
<tr>
<td>2</td>
<td>Coal</td>
<td>60,000 lbs/hr</td>
</tr>
</tbody>
</table>

C. INSTALLATIONS PROJECTED (to 1980)

- (With a boiler capacity > 80,000 lbs/hr. l.e. input 100 MMBtu)
- 1. In thousands of pounds/hr. steam
- 2. Include mixtures, denoting individual fuels
- 3. Tons per year of each pollutant

B. INSTALLATIONS FINISHED

Telephone Report

B. INSTALLATIONS PROJETED (to 1980)

- (With a boiler capacity > 80,000 lbs/hr. l.e. input 100 MMBtu)
- 1. In thousands of pounds/hr. steam
- 2. Include mixtures, denoting individual fuels
- 3. Tons per year of each pollutant

* New permitted
21.

BOILER "EXPANSION-REPLACEMENT" SURVEY

Number and Capacity

<table>
<thead>
<tr>
<th>New Boiler(s)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>New Boiler(s)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. INSTALLATIONS FINISHED ON SITE (BACK TO 1978)

(2) 130,000

- Coal: SO = 1.1
- PM = 0.5
- NOx = 98

B. INSTALLATIONS FINISHED ON SITE (BACK TO 1978)

(3) 50,000

- Coal: PM = 2
- NOx = 148

22 2-Digit NEC

22.

BOILER "EXPANSION-REPLACEMENT" SURVEY

Number and Capacity

<table>
<thead>
<tr>
<th>New Boiler(s)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
<th>New Boiler(s)</th>
<th>Fuel</th>
<th>SO, PM and NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. INSTALLATIONS FINISHED ON SITE (BACK TO 1978)

(2) 130,000

- Coal: SO = 1.1
- PM = 0.5
- NOx = 98

B. INSTALLATIONS FINISHED ON SITE (BACK TO 1978)

(4) 75,000

- Coal: PM = 2
- NOx = 148

23 2-Digit NEC
BOILER "EXPANSION-REPLACEMENT" SURVEY

New Boilers	Number and Capacity	Fuel	Emissions

Replaced Boilers

Name	Capacity	Fuel	Emissions

A. INSTALLATIONS FINISHED ON IN PROCESS (BACK TO 1976)

Number and Capacity	Fuel	Emissions

B. INSTALLATIONS FUTURE

Name	Capacity	Fuel	Emissions

C. INSTALLATIONS PROJECTED (TO 1982)

Name	Capacity	Fuel	Emissions

Notes:

1. Our boiler capacity is 454,000 lbs/hr, i.e. heat input of 200 MW.
2. For multi-fuel boilers, steam rates in thousands of lbs/hr for each fuel.
3. Include mixtures, denoting individual fuels.
4. These per year of each pollutant.
5. Emissions in lbs of data.
6. Normal based on 5,800 hours.
7. Measured in construction.
8. Expected base on electrostatic precipitator performance measured for wear/final listing.

* (With a boiler capacity > 60,000 lbs/hr, i.e. input 100 MW:)

1. In thousands of pounds/yr.
2. Include mixtures, denoting individual fuels.
3. Tons per year of each pollutant.
April 11, 1986

Mr. William Marx
Council Of Industrial Boiler Owners
3793 Burke Center Parkway
Burke, VA 22015

Dear Bill:

In response to your recent inquiry regarding the number of domestic coal fired boilers purchased and reported to ABMA for 1985, we confirm the following:

- Between 100 and 250 million BTU - 7 units totaling 960,000 FPH.
- Greater than 250 million BTU - 10 units totaling 3,632,000 BTU.

We trust this ABMA data will be useful in the National Coal Council report.

Best regards,

Russell N. Mosher
assistant executive director

ABMA
american boiler
manufacturers
association
Mr. William B. Marx, President
Council of Industrial Boiler Owners
11222 Silverleaf Dr.
Fairfax Station VA 22039

Dry PCB Systems

Dear Bill:

Please find enclosed one photcopy each of the 21 visual aids which I used for my presentation at the Technical Committee Meeting on February 4, 1986. If I can be of any further assistance, please do not hesitate to call.

Sincerely,

Joseph B. Landwehr, P.E.

JBL/cp

Enclosure
ATTACHMENT

DRY FLUE GAS DESULFURIZATION SYSTEMS ON INDUSTRIAL BOILERS

By

Joseph B. Landwehr, P.E.

3. CONTAINER CORPORATION OF AMERICA
 PHILADELPHIA, PENNSYLVANIA
 P.C. BOILER: 170,000 lb/hr
 COAL: 1.0 - 2.0% SULFUR
 FGD: ECOLAIRE
 1 ROTARY ATOMIZER
 94,000 ACFM
 RECYCLE NOT USED
 START-UP 1981
 90+ % SO₂ REMOVAL
 BAGHOUSE: ECOLAIRE
 8 COMPARTMENT PULSE-JET

5. AUSTELL BOX BOARD CORP.
 AUSTELL, GEORGIA
 P.C. BOILER: 250,000 lb/hr
 COAL: 1.5 TO 2.5% SULFUR
 FGD: WHEELABRATOR-FRYE
 21 DUAL-FLUID NOZZLE ATOMIZATION
 110,000 ACFM INLET GAS FLOW
 START-UP 1983
 80+ % SO₂ REMOVAL
 BAGHOUSE: WHEELABRATOR-FRYE
 6 COMPARTMENT PULSE-JET

6. BUICK MOTOR DIVISION
 GENERAL MOTORS CORP.
 FLINT, MICHIGAN
 P.C. BOILER: 400,000 lb/hr
 COAL: 1.0 to 3.0% SULFUR
 FGD: NIRO/JOY
 1 ROTARY ATOMIZER
 172,000 ACFM INLET GAS FLOW
 FLYASH RECYCLE
 START-UP 1983
 80+ % SO₂ REMOVAL
 BAGHOUSE: WESTERN PRECIPITATION-JOY
 6 COMPARTMENT REVERSE AIR
9. NORTH AMERICAN ROCKWELL
COLUMBUS, OHIO
P.C. BOILER: 225,000 lb/hr
COAL: 1.0 to 3.5% SULFUR
FGD: FLAKT
 1 ROTARY ATOMIZER
 102,000 ACFM INLET GAS FLOW
START-UP 1985
 75+ % SO₂ REMOVAL (DESIGN)
BAGHOUSE: FLAKT
 8 COMPARTMENT REVERSE AIR

12. A.E. STALEY
MORRISVILLE, PENNSYLVANIA
P.C. BOILER: 210,000 lb/hr
COAL: 1.5% SULFUR
FGD: KOCH/MIKROPUL
 9 DUAL-FLUID NOZZLES
 78,000 ACFM INLET GAS FLOW
START-UP 1985
 85+ % SO₂ REMOVAL (DESIGN)
BAGHOUSE: MIKROPUL
 8 COMPARTMENT PULSE-JET
Appendix F

Letter to William B. Marx from Karl F. Held

September 19, 1983

Mr. William B. Marx
President
Council of Industrial Boiler Owners
11222 Silverleaf Drive
Fairfax Station, Virginia 22039

Dear Bill,

Please find attached information on SO₂ emission regulations for coal- and oil-fired industrial boilers, as requested by phone today through Al Webe [EPA/URAPS]. The emission regulations are based on State Implementation Plans (SIPs) and represent the 90th percentile in each air quality control region (AQR) for two boiler sizes: 75 MMbtu/hour and 200 MMbtu/hour thermal heat input. I hope that this provides you with some idea of the range of industrial boiler emission regulations across AQRs across all.

If you have any questions, please do not hesitate to call.

Sincerely,

Karl F. Held
Project Manager

EEHnek
Attachment
cc: Al Webe (EPA)
Figure 2.3-2. Air Quality Control Regions
APPENDIX F

<table>
<thead>
<tr>
<th>SO\textsubscript{2} SIPs For Coal for Sizes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 400 400</td>
<td>133 170 170</td>
<td>133 170 170</td>
<td>133 170 170</td>
</tr>
<tr>
<td>2 400 400</td>
<td>134 200 200</td>
<td>134 200 200</td>
<td>134 200 200</td>
</tr>
<tr>
<td>3 400 400</td>
<td>135 200 200</td>
<td>135 200 200</td>
<td>135 200 200</td>
</tr>
<tr>
<td>4 400 400</td>
<td>136 200 200</td>
<td>136 200 200</td>
<td>136 200 200</td>
</tr>
<tr>
<td>5 400 400</td>
<td>137 200 200</td>
<td>137 200 200</td>
<td>137 200 200</td>
</tr>
<tr>
<td>6 400 400</td>
<td>138 200 200</td>
<td>138 200 200</td>
<td>138 200 200</td>
</tr>
<tr>
<td>7 400 400</td>
<td>139 200 200</td>
<td>139 200 200</td>
<td>139 200 200</td>
</tr>
<tr>
<td>8 400 400</td>
<td>140 200 200</td>
<td>140 200 200</td>
<td>140 200 200</td>
</tr>
<tr>
<td>9 400 400</td>
<td>141 200 200</td>
<td>141 200 200</td>
<td>141 200 200</td>
</tr>
<tr>
<td>10 400 400</td>
<td>142 200 200</td>
<td>142 200 200</td>
<td>142 200 200</td>
</tr>
<tr>
<td>11 400 400</td>
<td>143 200 200</td>
<td>143 200 200</td>
<td>143 200 200</td>
</tr>
<tr>
<td>12 400 400</td>
<td>144 200 200</td>
<td>144 200 200</td>
<td>144 200 200</td>
</tr>
<tr>
<td>13 400 400</td>
<td>145 200 200</td>
<td>145 200 200</td>
<td>145 200 200</td>
</tr>
<tr>
<td>14 400 400</td>
<td>146 200 200</td>
<td>146 200 200</td>
<td>146 200 200</td>
</tr>
<tr>
<td>15 400 400</td>
<td>147 200 200</td>
<td>147 200 200</td>
<td>147 200 200</td>
</tr>
<tr>
<td>16 400 400</td>
<td>148 200 200</td>
<td>148 200 200</td>
<td>148 200 200</td>
</tr>
<tr>
<td>17 400 400</td>
<td>149 200 200</td>
<td>149 200 200</td>
<td>149 200 200</td>
</tr>
<tr>
<td>18 400 400</td>
<td>150 200 200</td>
<td>150 200 200</td>
<td>150 200 200</td>
</tr>
<tr>
<td>19 400 400</td>
<td>151 200 200</td>
<td>151 200 200</td>
<td>151 200 200</td>
</tr>
<tr>
<td>20 400 400</td>
<td>152 200 200</td>
<td>152 200 200</td>
<td>152 200 200</td>
</tr>
<tr>
<td>21 400 400</td>
<td>153 200 200</td>
<td>153 200 200</td>
<td>153 200 200</td>
</tr>
<tr>
<td>22 400 400</td>
<td>154 200 200</td>
<td>154 200 200</td>
<td>154 200 200</td>
</tr>
<tr>
<td>23 400 400</td>
<td>155 200 200</td>
<td>155 200 200</td>
<td>155 200 200</td>
</tr>
<tr>
<td>24 400 400</td>
<td>156 200 200</td>
<td>156 200 200</td>
<td>156 200 200</td>
</tr>
<tr>
<td>25 400 400</td>
<td>157 200 200</td>
<td>157 200 200</td>
<td>157 200 200</td>
</tr>
<tr>
<td>26 400 400</td>
<td>158 200 200</td>
<td>158 200 200</td>
<td>158 200 200</td>
</tr>
<tr>
<td>27 400 400</td>
<td>159 200 200</td>
<td>159 200 200</td>
<td>159 200 200</td>
</tr>
<tr>
<td>28 400 400</td>
<td>160 200 200</td>
<td>160 200 200</td>
<td>160 200 200</td>
</tr>
<tr>
<td>29 400 400</td>
<td>161 200 200</td>
<td>161 200 200</td>
<td>161 200 200</td>
</tr>
<tr>
<td>30 400 400</td>
<td>162 200 200</td>
<td>162 200 200</td>
<td>162 200 200</td>
</tr>
<tr>
<td>31 400 400</td>
<td>163 200 200</td>
<td>163 200 200</td>
<td>163 200 200</td>
</tr>
<tr>
<td>32 400 400</td>
<td>164 200 200</td>
<td>164 200 200</td>
<td>164 200 200</td>
</tr>
<tr>
<td>33 400 400</td>
<td>165 200 200</td>
<td>165 200 200</td>
<td>165 200 200</td>
</tr>
<tr>
<td>34 400 400</td>
<td>166 200 200</td>
<td>166 200 200</td>
<td>166 200 200</td>
</tr>
<tr>
<td>35 400 400</td>
<td>167 200 200</td>
<td>167 200 200</td>
<td>167 200 200</td>
</tr>
<tr>
<td>36 400 400</td>
<td>168 200 200</td>
<td>168 200 200</td>
<td>168 200 200</td>
</tr>
<tr>
<td>37 400 400</td>
<td>169 200 200</td>
<td>169 200 200</td>
<td>169 200 200</td>
</tr>
<tr>
<td>38 400 400</td>
<td>170 200 200</td>
<td>170 200 200</td>
<td>170 200 200</td>
</tr>
<tr>
<td>39 400 400</td>
<td>171 200 200</td>
<td>171 200 200</td>
<td>171 200 200</td>
</tr>
</tbody>
</table>

SO\textsubscript{2} Emission Regulations for

Coal-fired Industrial Boiler

(in lbs. SO\textsubscript{2} / 106 Btu's)

KEY:

Column 1: Air Quality Control Region

Column 2: SO\textsubscript{2} SIP's for 75 MMBtu/hour boiler.

Column 3: SO\textsubscript{2} SIP's for 200 MMBtu/hour boiler.

"910" denotes no emission regulation.
REPORT ON INDUSTRIAL BOILER NEW SOURCE PERFORMANCE STANDARDS

<table>
<thead>
<tr>
<th>Size</th>
<th>SIPS for Res. for Sizes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750</td>
<td>750</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>1</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
</tr>
<tr>
<td>2</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
</tr>
<tr>
<td>3</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
</tr>
<tr>
<td>4</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
</tr>
<tr>
<td>5</td>
<td>250 250</td>
<td>250 250</td>
<td>250 250</td>
<td>250 250</td>
</tr>
<tr>
<td>6</td>
<td>250 250</td>
<td>250 250</td>
<td>250 250</td>
<td>250 250</td>
</tr>
<tr>
<td>7</td>
<td>250 250</td>
<td>250 250</td>
<td>250 250</td>
<td>250 250</td>
</tr>
<tr>
<td>8</td>
<td>125 125</td>
<td>125 125</td>
<td>125 125</td>
<td>125 125</td>
</tr>
<tr>
<td>9</td>
<td>125 125</td>
<td>125 125</td>
<td>125 125</td>
<td>125 125</td>
</tr>
<tr>
<td>10</td>
<td>125 125</td>
<td>125 125</td>
<td>125 125</td>
<td>125 125</td>
</tr>
<tr>
<td>11</td>
<td>125 125</td>
<td>125 125</td>
<td>125 125</td>
<td>125 125</td>
</tr>
<tr>
<td>12</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>13</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>14</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>15</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>16</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>17</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>18</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>19</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>20</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>21</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>22</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>23</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>24</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>25</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>26</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>27</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>28</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>29</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>30</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>31</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>32</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>33</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>34</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>35</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>36</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>37</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>38</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>39</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
<tr>
<td>40</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
<td>65 65</td>
</tr>
</tbody>
</table>

SO₂ Emission Regulations for Residual Oil-fired Industrial Boilers

(in lbs. SO₂/10⁶ Btu's)

- **Column 1:** Air Quality Control Region
- **Column 2:** SO₂ SIPS for 75 MMBtu/hour industrial boiler
- **Column 3:** SO₂ SIPS for 200 MMBtu/hour industrial boiler

"950" denotes no emission regulation.
Appendix G

Comments of the Coal Policy Committee on Industrial Boiler NSPS Draft Report, April 22, 1986

Coal Policy Committee Meeting
Notes from April 22, 1986—Notes by K. A. Shaffer

1. Hill—Move technical material to Appendix
 Response: Incorporated in text
2. Weir—Clarify EPA proposals
 Response: Incorporated in text
3. Holsten—Why can't standard be 2.5 lbs. SO$_2$/MM BTU?
 Response: See reply under Written Comments.

Responses to Written Comments

1. Pittsburgh and Midway Coal Mining Co.—R. M. Holsten
 - Recommends that SO$_2$ emissions level be raised from 1.6 lbs. to 2.5 lbs. SO$_2$/MM BTU for small boilers (<250 MM BTU/HR heat input).
 Response:
 The report has been revised to show that the 1.6 lbs. value is used for illustrative purposes only. It makes no specific recommendations for small boilers, but rather suggests that a study be performed by the DOE to determine the geographic availability of coal to the prominent industrial user regions and base a recommendation on that study.

2. AMAX—Wm. R. Wahl
 - Recommends that any references to acid rain impacts be de-emphasized.
 Response:
 We agree. All references to acid rain have been deleted.

3. Consolidation Coal Company—B. R. Brown
 - Comments can be broken down into three parts:
 a. A concern that flue gas scrubbing was listed as the only means to achieve a percent reduction.
 b. Not enough emphasis on other technological means such as fluidized bed combustion.
 c. A concern over the question of reliability of FGD systems when applied to industrial boilers.
 Response:
 a. The report was written in response to EPA's recommendation for SO$_2$ emissions standards for industrial boilers. In turn, these standards were based on the EPA Development Document of March, 1985 on industrial boilers. The Development Document expresses costs and makes recommendations on the basis of FGD at a 90% SO$_2$ removal rate. Thus, our report makes similar references to FGD when discussing cost comparisons and impacts on the coal market.
 b. We agree that there are other technological means of achieving a percent reduction. The NSPS report does address other technologies. The revised version of our report gives the section on fluidized bed combustion greater prominence and includes comments in the Executive Summary.

We believe FBC's are the trend of the future. However, there is little long term operating data currently available for industrial coal-fired FBC's from which fair and reasonable NSPS regulations can be developed. For example, the EPA Development Document, p. 20 states:

"Of the 80 existing or planned FBC systems in the United States, 16 are designed to burn coal and nine are designed to burn coal along with other fuels. None burn oil. After excluding
those FBC systems that are research and development units or that are currently under construction, the remaining of operating FBC systems burning coal is eight. Of these eight, only four FBC systems are using limestone for SO\textsubscript{2} control. In addition, these four FBC systems are concentrated in a very narrow range of steam generating unit size from 7 to 16 MW (24 to 54 million Btu/hr) heat input capacity and operate with an even narrower range of coal sulfur content from 3.2 to 5.4% (1.2 to 1.3 lb SO\textsubscript{2}/million Btu).

We believe this operating record is an insufficient basis for NSPS regulations for a wide range of boiler (FBC) sizes and various boiler (FBC) vendor technologies.

We agree that the current generation of flue gas desulfurization technologies has been proven reliable for the utility sector. The actual reliability data show, according to ERAB statistics, that wet limestone scrubber availability is 73% while wet lime fumes better at 84% availability. These figures are adequate for a utility who has access to a grid system to supplement needs with other units when the FGD system is down for repairs or routine maintenance. On the other hand, an industrial boiler must stand alone and does not have the luxury of a grid system to supply energy needs at a moment's notice.

Even at 84% availability, this is not adequate, in our opinion, as a reliable technology for the industrial user. In addition, the costs of imposing this technology on the industrial sector simply drives the user to natural gas as shown by the EPA study.

4. Kerr-McGee

a. Analysis is too long and confusing; logic leading to conclusion is unclear.

Response: We agree. Attempts have been made to revise the report by placing more of the discussion in the appendices and by rearranging the order of other points to make the report flow better.

b. NCC should write an Issue/Option Paper or a sharply drawn Executive Summary.

Response: We agree and have improved the Executive Summary.

c. Raises a question as to the purpose of EPA’s addressing NSPS for industrial boilers.

Response: Industrial boilers have been defined as a “major source” by EPA and therefore NSPS regulations are required to control polluting emissions. Also, as a result of a lawsuit by NRDC, which was eventually settled out of court, EPA is required to finalize the standards for industrial boilers by November of 1986.

d. Raises the question of the proposed NSPS for industrial boilers and recommends a less stringent standard.

Response: EPA NSPS for industrial boilers greater than 250 MM BTU/HR heat input (i.e. 1.2 lbs. SO\textsubscript{2}/MM BTU) were based on the 1971 amendments to the Clean Air Act and cannot be made less stringent. However, units smaller than 250 MM BTU/HR heat input are being addressed by EPA for the first time and we agree that a less stringent standard can be imposed with little or no impact on total SO\textsubscript{2} emissions.
Appendix H

Comments of The National Coal Council on Industrial Boiler NSPS Draft Report, May, 1986

1. D. M. Carlton, Radian Corporation

Comment:
One of the conclusions is that the FBC technology lacks sufficient operating data upon which to base New Source Performance Standards. It is my opinion that there is sufficient operating data to consider this technology in the development of New Source Performance Standards.

Response:
We believe that any New Source Performance Standards should be commensurate with the technology involved. The draft standards we have seen do not differentiate between flue gas scrubbers, fluidized bed boilers, or other new, promising technologies. Any new standards should try to promote the use of the most cost-effective technologies, not discourage their development by imposing blanket regulations that do not recognize technology and operational differences. We agree that fluidized bed boilers (FBC) should eventually be included with New Source Performance Standards. However, as the EPA noted in their Development Document, there are only four commercial operating FBC systems in the U.S. utilizing limestone for SO2 control, and all four of these units are less than 100 MM BTU/HR heat input (i.e. 24 to 54 MM BTU/HR).

We believe, and CIBO (Council of Industrial Boiler Owners) concurs, that this is an inadequate basis for regulations. Most industrial FBC's will be considerably larger than 54 MM BTU/HR (at least 3 to 10 times) simply because all coal-fired systems are capital intensive and require larger sizes to capture economies of scale. Since FBC technology is relatively new to the U.S., these larger sizes will mean the system owner will be taking both scale-up and new technology risks. By requiring the owner to meet NSPS standards, which are basically unproven under actual industrial operating conditions at these larger sizes, he will be burdened with yet another uncertainty.

The EPA in establishing NSPS is permitted by law to differentiate on the basis of technology and applications. We believe these standards should be based on actual performance data gathered from industrial units in the appropriate size range. Many of those units are now under construction, and more will be built within the next several years. The EPA should select a representative sampling of these units for study, then base the NSPS on these data.

2. M. S. White, American Electric Power

Comment:
On page 10, a more recent time frame should be used when quoting wet limestone and lime system availabilities. Current designs for wet lime FGD systems would yield availabilities greater than 90%.

Response:
We do not have more recent data on the availability of flue gas desulfurization systems. Variable results are found in the EPA Development Document for industrial boilers as summarized in table on next page.30

These data shown in the table are more relevant than ERAB data because they are for industrial boilers.

However, the EPA data only represents about 12 installations (out of over 100). We do not know if these examples are representative of the entire population, or just special cases. In light of the uncertainty regarding

<table>
<thead>
<tr>
<th>FGD</th>
<th>Cumulative Time Period Days</th>
<th>Average Availability %</th>
<th>Time Period Days</th>
<th>Availability Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime Spray Drying</td>
<td>2712</td>
<td>71.4</td>
<td>?</td>
<td>Very good based on pilot scale</td>
</tr>
<tr>
<td>Lime/L.S. Wet Scrubber</td>
<td>815</td>
<td>94.7</td>
<td>?</td>
<td>A problem, but improving</td>
</tr>
<tr>
<td>Dual Alkali</td>
<td>41</td>
<td>100.0</td>
<td>?</td>
<td>Very high</td>
</tr>
<tr>
<td>Sodium Wet Scrubber</td>
<td>1855</td>
<td>98.2</td>
<td>?</td>
<td>Excellent Scrubber</td>
</tr>
</tbody>
</table>

availability, we have deleted the ERAB reference in question and are seeking performance information from members of CIBO.

Comment:
"The practical effects of these new requirements (industrial NSPS which are less stringent than utility NSPS) seem to be that higher emissions from one facility will have to be offset by another facility or facilities in the same area. Thus, less stringent requirements for industrial facilities may well mean tighter emission limitations for utility plants in the area." What effect will this then have on utility coal demand?

Response:
As shown on p. 16 of the report, calculations using a 1.6 lbs. SO₂ limit (used for illustration) for smaller boilers (i.e. <250 MM BTU/HR heat input) yields a mere 3000 TPY SO₂ nationwide over the case where the 1.2 lbs. limit is applied across the board to all boilers in this category of sources (the 1.2# limit already applies to larger boilers). It is our belief that this additional 3000 TPY prorated on a state-by-state basis will have minimal impact on utility emissions.

For example: The total coal market for industrial users in 1984 was 72.8 million TPY and Ohio was the #1 user at 5.8 million TPY (NCA data). Prorating this 3000 TPY to Ohio on the basis of industrial consumption yields a mere 239 tons per year statewide. On the other hand, a typical utility boiler in Ohio probably emits that much SO₂ in a day. Obviously, the effect of this 3000 TPY becomes even smaller if prorated to other states. Similar calculations for Massachusetts, for example, yields a mere four tons SO₂ per year.

While Mr. Schleede’s point is well taken, we do not believe that less stringent SO₂ emission limits placed on small boilers (i.e. <250 MM BTU) as we propose will present too much difficulty to utilities should they be required to seek offsets.
Appendix I

Letter from B.R. Brown to the Secretary of Energy and the Secretary of Energy's Response to Mr. Brown's Letter

December 19, 1985

The Honorable John E. Herrington
The Secretary of Energy
1999 Independence Avenue, S.W.
Washington, D.C. 20585

Dear Mr. Secretary:

The National Coal Council has been following the activities of the U.S. Environmental Protection Agency in the matter of proposals under study relative to EPA's proposals for industrial boilers. We are encouraged that you have met with representatives of industry, including NOC member Bill Bona, to hear their concerns.

At a recent meeting of the NOC, the members were given an update on the status of the EPA's proposal. There is concern over the potential devastating impact on existing and new authorized use of coal in the industrial sector. Many believe that the proposed actions will promote the increased use of oil and/or natural gas.

We believe that this proposal may not be in the national interest and, therefore, we wanted to express our grave concern. The National Coal Council Coal Policy Committee is following this matter closely. We are ready to provide assistance and advice to you as needed.

Sincerely,

[Signature]

Chairman

An Advisory Committee to the Secretary of Energy
Background Information on The National Coal Council

Recognizing the valuable contribution of the industry advice provided over the years to the Executive Branch by the National Petroleum Council and the extremely critical importance of the role of coal to America and the world’s energy mix for the future, former Secretary of Energy, Don Hodel, with strong support from President Reagan, floated the idea of a similar advisory group for the coal industry in 1984 at the White House conference on Coal. The opportunity for the coal industry to have an objective window into the Executive Branch drew overwhelming support.

In the fall of 1984, the National Coal Council was born with the appointment by Secretary Hodel of the first 23 members. In April of 1985, Secretary of Energy, John Herrington, made the Council fully operational with the appointment of an additional 94 members. Secretary Herrington’s action was based on his conviction that such an industry advisory council could make a vital contribution to America’s energy security by providing him with information that could help shape policies leading to the increased production and use of coal and, in turn, decreased dependence on other, less abundant, more costly and less secure sources of energy.

The Council is chartered by the Secretary of Energy under the Federal Advisory Committee Act. The purpose of The National Coal Council is solely to advise, inform and make recommendations to the Secretary of Energy with respect to any matter relating to coal or the coal industry that he may request.

The National Coal Council does not engage in any of the usual trade association activities. It specifically does not engage in lobbying efforts.

Matters which the Secretary of Energy would like to have considered by the Council are submitted as a request in the form of a letter outlining the nature and scope of the study. The request is then referred to the Coal Policy Committee which makes a recommendation to the Council. The Council reserves the right to decide whether or not it will consider any matter referred to it.

The first major studies undertaken by The National Coal Council at the request of the Secretary of Energy were concerned with (1) an overview of federal policies affecting coal production, marketing and use, and (2) identification of impediments to coal use and recommended solutions. Under these two topics, the members proceeded to study three subjects:

- Coal Conversion
- Clean Coal Technologies
- Interstate Transmission of Electricity

The Council also can determine topics which it believes significant for study and then seek the approval of the Secretary to proceed, as in the case of the recently completed study on New Source Performance Standards for Industrial Boilers.

Members of The National Coal Council are appointed by the Secretary of Energy and represent all segments of coal interests and geographical disbursement. The National Coal Council is headed by a Chairman and a Vice Chairman who are elected by the Council. The Council is supported entirely by voluntary contributions from its members.
The National Coal Council
Membership Roster 1985-1986

CHAIRMAN
Honorable John N. Dalton
Attorney at Law
McGuire, Woods & Battle

VICE CHAIRMAN
Mr. B. R. Brown
Chairman/CEO
Consolidation Coal Co.

EXECUTIVE DIRECTOR
James E. McAvoy
Executive Director
The National Coal Council

MEMBERS
Dr. Bill L. Atchley
President
Nat'l. Science Ctr. for Communications & Electronics Foundations, Inc.

Mr. John E. Baugues, Sr.
President
James Spur Coal Company, Inc.

Mr. Daniel Beam
Member
Arkansas Mining Board

Mr. Donald P. Bellum
President
Cyprus Coal Company

Mr. Thomas J. Belville
President
Belville Mining Company Inc.

Mr. George M. Bigg
President
Citizens Fidelity Energy Company

Mr. Gerald Blackmore
President
Old Ben Coal Company

Ms. Sandra Blackstone
Professor—College of Law
University of Denver

Mrs. Joan T. Bok
Chairman
New England Electric System

Mr. J. Robert Bray
Executive Director
Virginia Port Authority

Mr. Perry G. Brittain
Chairman/CEO
Texas Utilities Company

Dr. Robert W. Brocksen
Executive Director
Living Lakes, Inc.

Mr. B. R. Brown
Chairman/CEO
Consolidation Coal Company

Mr. William Budd
Executive Vice President
Wyoming Mining Association

Mr. A. W. Calder
President/CEO
Joy Manufacturing Company

Dr. Donald Carlton
President
Radian Corporation

Ms. S. Joyce Carter
President
S J Carter Associates, Inc.

Mr. William Cavanaugh III
President/Chief Operating Officer
Mississippi Power & Light Company

Mr. R. B. Claytor
Chairman/CEO
Norfolk Southern Corporation

Ms. Lila Cockrell
Member of the Board of Trustees
City Public Service
San Antonio, TX

Mr. Roger E. Dahlgren
President
K & R Coal Company

Honorable John N. Dalton
Attorney at Law
McGuire, Woods & Battle

Ms. Barbara Deverick
Administrative Manager
Blueridge Electric Membership Corp.

Mr. Walter Drexel
Chairman/CEO
Burlington Northern Railroad

Mr. Garry N. Drummond
Chairman of the Board
Drummond Coal Company

Mr. John Dwyer
President
North Dakota Lignite Council

Mr. Jack R. Fairchild
Chairman/CEO
Fairchild International

Mr. Joseph Farrell
Chairman-Coal Group
The Pittston Company

Mr. Jack Fitz
President
R. M. Mining Company

Mr. Mason Foertsch
President
Foertsch Construction Company
Mr. Lawrence E. Forgy, Jr.
Attorney at Law
Wyatt, Tarrant & Combs

Mr. George Fumich, Jr.
President
George Fumich Associates, Inc.

Mr. Robert E. Garbesi
President
Diamond Shamrock Coal Company

Mr. John D. Geary
President
Midland Enterprises Inc.

Mr. Larry W. George
Attorney at Law

Mr. Robert H. Gentile
Chief Executive Officer
Ohio River Collieries Company

Dr. Alex E. S. Green
Graduate Research Professor
University of Florida

Mr. W. Carter Grinstead, Jr.
President
Exxon Coal & Minerals Company

Ms. Pat Harrison
President
National Women's Economic Alliance

Dr. George R. Hill
Emeritus Professor
University of Utah

Mr. Richard M. Holsten
Chairman & President
The Pittsburg & Midway Coal Mining Co.

Mr. Charles Hunter
Chief Operations Officer
Sunbelt Mining Company

Mr. Roy L. Inscore
President
Teledyne Thermatics

Mr. Trevor J. Jones
President
Jeffrey Mining Machinery

Mr. W. G. Kegel
President/CEO
Rochester & Pittsburgh Coal Company

Mr. William M. Kelce
President
Alabama Coal Association

Mr. George Kelm
President/CEO
Sahara Coal Company, Inc.

Mr. Dwight W. Knott
Manager
Sunedco Coal Company

Mr. William M. Laub, Sr.
President/CEO
Southwest Gas Corporation

Dr. Irving Leibson
Vice-President
Bechtel Group, Inc.

Mr. William W. Lyons
Vice-President
NERCO Inc.

Mr. James E. Maguire
President
Indiana Coal Council, Inc.

Mr. Roger A. Markle
President
Quaker State Oil Refining Corporation

Mr. William B. Marx
President
Council of Industrial Boiler Owners

Mr. Walter J. McCarthy, Jr.
Chairman of the Board
Detroit Edison Company

Mr. James McGlothlin
President/CEO
United Coal Company

Mr. Paul McIntyre
Jacobs Ranch Mine
Kerr-McGee Coal Corporation

Mr. James H. McJunkin
Executive Director
The Port of Long Beach

Mr. Charles S. McNeil
President/CEO
Kaiser Steel Corporation

Mr. Lloyd Meyers
President
Washington Irrigation & Development Company

Mr. James Mockler
Executive Director
Montana Coal Council

Honorable Arch Moore
Governor of West Virginia

Mr. George E. Nettels, Jr.
President
McNally Pittsburg Inc.

Mr. George Nicolozakes
President
Marietta Coal Company

Mr. James J. O'Connor
Chairman & President
Commonwealth Edison Company

Ms. Mary Eileen O'Keefe
President/CEO
Lake Shore International Ltd.
Mr. S. O. Ogden
Chairman/CEO
Island Creek Coal Company

Mr. Louis J. Pagnotti, III
Professional Engineer
Jeddo-Highland Coal Company

Mr. A. J. Pfister
General Manager
Salt River Project

Mr. Robert H. Quenon
President/CEO
Peabody Holding Company

Mr. James G. Randolph
President
Kerr-McGee Coal Corporation

Mr. Michael K. Randolph
Attorney at Law/Partner
Bryan, Nelson, Allen, Schroeder & Randolph

Mr. Jim Rose
President
Interstate Coal Company, Inc.

Mr. R. E. Samples
President
Arch Mineral Corporation

Mr. Orlando C. Schiappa
President/CEO
American Industries & Resources Corporation

Ms. Debbie Schumacher
President
Women in Mining

Mr. Walter Shea
Vice-President/Assistant to the President
International Brotherhood of Teamsters

Mr. Carl W. Smith
President
AMVEST Corporation

Mr. Robert Spencer
Secretary-Treasurer/CEO
Hepburnia Coal Company

Honorable Stanley G. Stephens
Montana State Senate

Mr. Neal S. Tostenson
President
Ohio Mining & Reclamation Association

Mr. Richard Trumka
President
United Mine Workers of America

Mr. Joe Usibelli
President/CEO
Usibelli Coal Mine, Inc.

Mr. Walter M. Vannoy
President/Chief Operating Officer
The Babcock & Wilcox Company

Mr. Ted Venners
Managing Partner
K-Fuel Partnership

Mr. William R. Wahl
President/CEO
Amax Coal Company

Mr. Hays Watkins
Chairman/CEO
CSX Corporation

Martin A. White
Chairman/President/CEO
Western Energy Company

Mr. W. S. White, Jr.
Chairman
American Electric Power Service Corp.

Mr. Alexander M. Wilson
Chairman/CEO
Utah International Inc.

Ms. Susan Wingfield
Vice-President
Mississippi Valley Coal Exporters

Mr. A. J. Wittmaier
President/CEO
Knife River Coal Mining Company

Mr. Peterson Zah
Chairman
The Navajo Tribal Council
Appendix K

The National Coal Council
Coal Policy Committee
Membership Roster and New Source Performance Standards Work Group

Coal Policy Committee Membership Roster 1985-1986

CHAIRMAN
Gerald Blackmore
President
Old Ben Coal Company

MEMBERS OF THE COAL POLICY COMMITTEE

Dr. Bill Atchley
President
National Science Center for Communications & Electronics Foundations, Inc.

Sandra Blackstone
Professor—College of Law
University of Denver

Joan T. Bok
Chairman
New England Electric System

Perry G. Brittain
Chairman/CEO
Texas Utilities Company

Dr. Robert W. Broeksen
Executive Director
Living Lakes, Inc.

B. R. Brown
Chairman/CEO
Consolidation Coal Company

A. W. Calder
President/CEO
Joy Manufacturing Company

Dr. Donald Carlton
President
Radian Corporation

William Cavanaugh, III
President/
Chief Operating Officer
Mississippi Power & Light Co.

Lila Cockrell
Member of the Board of Trustees
City Public Service
San Antonio, Texas

Honorable John N. Dalton
Attorney at Law
McGuire, Woods & Battle

Barbara Deverick
Administrative Manager
Blue Ridge Electric Membership Corporation

John Dwyer
President
North Dakota Lignite Council

Jack R. Fairchild
Chairman/CEO
Fairchild International

Jack Fitz
President
R. M. Mining Company

Lawrence E. Forg, Jr.
Attorney at Law
Wyatt, Tarrant & Combs

Robert E. Garbesi
President
Diamond Shamrock Coal Company

Dr. Alex E. S. Green
Graduate Research Professor
University of Florida

Pat Harrison
President
National Women's Economic Alliance

Dr. George R. Hill
Emco Professor
University of Utah

Richard M. Holsten
Chairman & President
The Pittsburg & Midway Coal Mining Company

83
Trevor J. Jones
President
Jeffrey Mining Machinery

William G. Kegel
President/CEO
Rochester & Pittsburgh Coal Company

Dwight W. Knott
Manager
Sunedco Coal Company

Dr. Irving Leibson
Vice President
Bechtel Group Inc.

James F. Maguire
President
Indiana Coal Council, Inc.

William B. Marx
President
Council of Industrial Boiler Owners

James McClothlin
President/CEO
United Coal Company

Charles S. McNeil
President/CEO
Kaiser Steel Corporation

Lloyd Meyers
President
Washington Irrigation & Development Company

James Mockler
Executive Director
Montana Coal Council

George E. Nettels, Jr.
President
McNally Pittsburg, Inc.

Mary Eileen O'Keefe
President/CEO
Lake Shore International, LTD

S. O. Ogden
Chairman/CEO
Island Creek Coal Company

Louis J. Pagnotti, III
Professional Engineer
Jeddo-Highlands Coal Company

Debbie Schumacher
President
Women in Mining

Honorable Stanley G. Stephens
State Senator
Montana State Senate

Neal S. Tostenson
President
Ohio Mining & Reclamation Association

Richard Trumka
President
United Mine Workers of America

Walter Vannoy
President/
Chief Operating Officer
Babcock & Wilcox Company

William R. Wahl
President/CEO
Amex Coal Company

W. S. White, Jr.
Chairman
American Electric Power Service Corporation

Susan Wingfield
Vice President
Mississippi Valley Coal Exporters

A. J. Wittmaier
President/CEO
Knife River Coal Mining Company
Members of the New Source Performance Standards Work Group

LEADER
William B. Marx
President
Council of Industrial Boiler Owners

MEMBERS
Sandra Blackstone
Professor—College of Law
University of Denver

W. Carter Grinstead, Jr.
President
Exxon Coal & Minerals Company

Lloyd Meyers
President
Washington Irrigation & Development Co.

S.O. Ogden
Chairman/CEO
Island Creek Coal Company

Louis J. Pagnotti, III
Professional Engineer
Jeddo-Highland Coal Company

ASSOCIATES
Kathleen Bennett
Director
Champion International Corporation

C. T. Hilderley, Jr.
Washington Representative
Ashland Oil, Inc.

Jerome J. Karaganis
Vice President
National Coal Association

Jerry L. Lombardo
Director
Island Creek Coal Company

Joseph W. Mullan
Senior Vice President
National Coal Association

Earl T. Robinson
Technical Advisor
Old Ben Coal Company

Ronald D. Sullivan
Senior Regulatory Analyst
Exxon Coal & Minerals Company

David G. Todd
Vice President
Ashland Coal Company